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ABSTRACT 

The space WeakL 1 consists of all Lebesgue measurable functions on [0, 1] 

such that  

q(f) = supcA{t : I$(t)l > c} 
c>0 

is finite, where A denotes Lebesgue measure. Let p be the gauge func- 

tional of the convex hull of the unit ball {f : q(f)  < 1} of the quasi-norm 

q, and let N be the null space of p. The normed envelope of WeakL i, 

which we denote by W, is the space (WeakLi/N, p). The Banach envelope 

of WeakL i, W, is the completion of W. We show that W is isometri- 

cally lattice isomorphic to a sublattice of W. It is also shown that  all 

rearrangement invariant Banach function spaces are isometrically lattice 

isomorphic to a sublattice of W. 

In troduct ion  

Let (~, E, #) be a measure space. The space WeakLi(#) consists of all (equiva- 

lence classes of almost everywhere equal) real-valued E-measurable functions f 

for which the quasinorm 

q(f) = supc#(w : If(w)l > c} 
c>0 

is finite. This space arose in connection with certain interpolation results, and 

is of importance in harmonic analysis. If (~, E, #) is purely non-atomic, the 

maximal seminorm p on WeakL i (~) was found in [1] and [2] to be 

p(f) = lim sup f I f ld#/ ln(q/p) .  
n-+~ q/P>" Jp<l.fl<q 

p , q > 0  - -  - -  
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The normed envelope of WeakL 1(#) is the normed space 

W(#) = (WeakLl(#)/N, p), 

where N denotes the null space of the functional p. The Banach envelope is 

the completion W(#)  of W(#).  In this paper, we consider (up to measure iso- 

morphism) only the measure space [0, 1] endowed with Lebesgue measure A. We 

denote W(A) and W(A) by W and W respectively. Peck and Talagrand [6] 

showed that W is universal for the class of all separable Banach lattices with 

order continuous norm. Recently, Lotz and Peck [5] showed that W contains 

isometrically lattice isomorphic copies of certain sublattices of t~176 (Here 

and throughout, L 1 means LI[0, 1], up to isometric lattice isomorphism.) From 

this, they deduced that every separable Banach lattice is isometrically lattice iso- 

morphic to a sublattice of W. In this article, we show that there is a sublattice 

G of t~176176176176 such that G, W, and W mutually isometrically 

lattice isomorphically embed in one another. It is also shown that all rearrange- 

ment invariant Banach function spaces in the sense of [5] are isometrically lattice 

isomorphic to sublattices of W. For further results regarding the structure of 
WeakLl(#) ,  we refer the reader to [3]. Unexplained notation and terminology on 

vector lattices can be found in [7]. If E is a Banach lattice and I is an arbitrary 

index set, let lP(I, E),  1 _< p _< oo, respectively, Co(I, E), be the space consisting 

of all families (xi)ie~ such that xi �9 E for all i, and ([[x,[[)iel �9 ~ ( I ) ,  respec- 
tively, co(I). We write ln(E) and co(E) for these respective spaces if the index 

set I = N. Clearly s E) and co(I, E) are Banach lattices. The cardinality of 

a set A is denoted by ]A[. 

F 

1. T h e  spaces  W a nd  W 

If f is a real-valued function defined on a set f2, let the s u p p o r t  of f be the set 

s u p p f  = {w E fl : If(w)[ > 0}. Furthermore, for real numbers p < q, we write 

{p_< f _< q} for the set ( w E ~ : p < _ f ( w ) < _ q } .  

LEMMA 1: Let (hk) be a sequence of disjointly supported Lebesgue measurable 
functions on [0, 1] 2. Suppose there exist t~, 7 > 0 and strictly positive sequences 

(~k), (~) such that 
1. ak < ~k < ak+l for all k, 
2. limk ak = limk/3k = c~, 
3. ln(ak+l/~k) >__ (k + 1) k )-'~j=l f hj for all k, and 
4. 6ak <_ hk(s,t) <_ 713k for all (s,t) �9 supphk. 
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I l l  < p < q < cr q/p > 8aN, and h denotes the pointwise sum ~ hk, then 

l l n T q  fp h < ~  ~p+SUp hk. 
<h<_q k <_hh<q 

Proof." If [gak, 7~k] n [p, q] = 0, fV<_h,<r hk = 0. So we may assume that the 

said intersection is non-empty for some k. Since gak ~ ~ ,  [gak, 7~k] n[p, q] # 0 
for at most finitely many k. Let m and n be the minimum and maximum of the 

set {k: [g~k, 7~k] n [p, q] # 0} respectively. We consider two cases. 

CASE 1: m = n. 
In this case, 

~p<h<qh = ~p<h.,<qhrn < s u p  [ hk. 
. . . .  k Jp~h~ <q 

CASE 2: m < •. 

Note that p _< 7/~m, and q >__ 5an. Therefore, 

In 7q a,~ n E / hk. 
~pp > In fl,,_----~ > k=X 

Now q > 5paN >_ tiaN; hence n > N. Thus 

rt--1 

<h < hk 
<_h<q k=m P-  k_q <_h.<_q 

n -1  

= <_hn<_q 

1 7q f < - In + sup hk 
-- n ~p k Jp<_hh<_q 

_< In ~ + sup h~. | 
k <_hk<_q 

Write any element g E s176176 as g = (go), where go ~ L1 for all i,j, and 

sup~,~ 119OIIL1 < ~ .  For any double sequence of numbers M = (Mij) such that 
Mij > 1 for all i,j, let F = FM be the (non-closed) lattice ideal of t~ ( l~ (L1) )  

consisting of all g = (9,j) e ~ ( s  such that sup~,r IIg  II  /M j < o~. 
For the next result, we follow the idea of Lotz and Peck [5] in considering the 
WeakL 1 space defined on the unit square [0, 1] 2 endowed with Lebesgue measure. 

Since [0, 1] and [0, 1] 2 are isomorphic measure spaces, their corresponding WeakL 1 

spaces are isometrically lattice isomorphic; the same holds for the respective 

normed and Banach envelopes. 
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PROPOSITION 2: There exists a lattice homomorphism T : F -~ W of norm <_ 1 

which vanishes on F N Co(e~176 

Proof: Choose positive sequences (en) and (ri) with limits 0 and oo respec- 

tively so that ri > 1 _> en for a l l i  and n. For eachn ,  let En be the condi- 

tional expectation operator on L t with respect to the a-algebra generated by 

{ [ _ ~ 2  ~ )  : 1 _< m_< 2n}. I f i , j , n  e 1N, let A,j,~ be acountable  set which is 

dense in 

{ f  E EnLt  : IlfllL' = 1, en < f < nMij}  
2"  with respect to the L~ For each f E Aijn, let (a,~(y))m= 1 be the 

coefficients such that 

f = E a,n(f)Xtcm-1)/2",m/2~)" 
m = l  

Note that c,, <_ am(f )  _ 2" for 1 < m _< 2 n. Arrange UAi jn  into a se- 

quence (fk). For each k, determine i ( k ) , j ( k ) , n ( k )  such that f~ E Ai(k)d(k),n(k). 

Choose a positive sequence (bk) so that if we define ak = btr '~(k), and ill, = 

Mi(k)d(k)ri(k)bk/en(k), then ak < /~k < C~k+l, limk ak = cx~ = limk/~k, and 

k 
O~k+l 

ln---~k _> (k + 1 ) E l n r i q ) .  
1=1 

Let g = (gij) e F,  and k e N. Define a function hk on [0, 1] 2 by 

2n(k) 

hk(s, t )  = E gi(k)d(k)(t) 
S X B k . ~  

rr~ = l 

where 

am(fk) m - 1  m } B k m :  (8, t) : arn(fk______~) < s < - -  < t < 
ri(k)bk bk ' 2 n(k) ~ " 

The map S defined by Sg = ~ hk, where the sum is taken pointwise, is a linear 

map from F into the space of Lebesgue measurable functions on [0, 1] 2. Notice 

that 

2"~'~ r a,,,(f~) a m ( h )  
s u p p h ~ C _ U  / ( s ' t ) : - < s < -  

-1 ri(k)bk bk i 

c (s , t ) :  e'~(k------2-~ < s <  bk J 
-- ri(k)b k 

{ 1 1 }  c_ ( s , t ) :N<s<- -  
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Hence the hk'S are pairwise disjoint. As the sets Bkm, 1 <_ m <_ 2 n(k), are also 
pairwise disjoint for each k, it follows readily that  S is a lattice homomorphism. 

Suppose g E F,  Ilgll = supi,j IlgijllL' --~ 1, let us estimate the p-norm of the 
function Sg. In the first instance, let us assume additionally that  there exists 
5 > 0 such that  gij(t) >_ ~ for all i,j, and t. Set "), = supi.j [ [ g i j [ [ L ~ / M i j .  I f  

(s, t) E supp hk, then 

and 

Hence 

5_ <_ gi(k)d(k)(t) _ hk(s,t) < "~Mi(k)'J(k) 
s s s 

Mi(k),j(k) r 2 "(k) 1 
- -  < s <  - -  - -  

/~k ri(k) bk bk c~k 

5ak <_ hk(s,t) <__ ~k .  

Moreover, 

(1) 

hk 2"(k)E j_~_,f 2"-~-(~5 ~ Z  )- gi(k)j(k)(t)s dsdt 
m = l  ~ ri(k)o ~ 

2n(k) /2 n-~l 
= E gi(k)j(k)(t)dt lnr~(a) 

= Ilgi(a),/(k)llL ~ lnri(k) < lnri(a). 

Therefore, 
k k 

In ak+~ f > (k + 1 ) E l n r i ( 0  _> (k + l ) E  hr. 
/=1 /=1 

By Lemma 1, if q/p > &~g, and p _> 1, then 

fp 1 "rq fp Sg <_ -~ In + sup hk. 
(Sg<_q ~P k <_hk <_q 

If q/p > 5~N and 0 < p < 1, then, using Lemma 1 again, 

/, /. f /1 Sg < Sg + Sg < 1 + ~ In + sup ilk. 
(_Sg(q  -- ~Sg<_l <_Sa(q/p ~P k (h~  (_ q/p 

Hence 

(2) lira sup ~ Sg/In(q/p) < lim sup sup~ flk/In(q/p). 
n--~oo q/p>. <Sg~_q n--~oo q/p>~ k (_hkr q 
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Now 

fp fo 1 g~k),j(~)(t)/p f g,(~),j(~)(t) 
hk <_ - -  ds dt 

<_hkgq dgi(k).j(h)(t)/q 8 
= Hg~(k),J(k)[[L~ In - q < In - .  q 

P P 

Therefore, equation (2) implies that p(Sg) < 1. For a general g = (gii) �9 F,  

and any 5 > 0, let g' = (g;i), where g~j = Igijl + 5. By the above calculation, 

p(Sg') <_ Ilg'll -- Ilgl[ + J. Since S is a lattice homomorphism, ISg'l _> ISgl. Thus 

p(Sg) <_ p(Sg') <_ I[gll + ~. As (f > 0 is arbitrary, we conclude that  p(Sg) <_ Ilgll. 
In particular, applying Lemma 1 in [5], we see that S maps into WeakL 1. It 

is now clear that the map T : F -~ W defined by Tg = Sg + N is a lattice 

homomorphism of norm _< 1. 

It  remains to show that  T vanishes on FNCo(s176176 By the continuity of T, 

it suffices to show that  Tg = 0 for all g = (gij) �9 F such that there exists i0 �9 N 

with gii = 0 whenever i ~ i0. As above, we may assume additionally that  there 

exists 5 > 0 such that gioj(t) > 5 for all j and t. If hk ~ O, then gi(k),j(k) ~ 0; 

hence i(k) = io. Using (1), 

By (2), 

fp hk < / h k  < Ilgll lnri(k) 
<h~<q 

Ilgll lnrio p(Sg) < lim sup 
- n ~ q / , , > , ,  ln(q/p) 

p,q>O 

= IIgll In r,o. 

- - - 0 .  | 

Let Q : t~ --~ l~176176162 be the quotient map. Since Q 

is a lattice homomorphism, G = QF is a sublattice of s 

THEOREM 3: There exists an isometric lattice isomorphism from QF into W. 

Proof: Let T be the map defined in the proof of Proposition 2. Since T vanishes 

on F A c0( /~(Li ) ) ,  there exists R : QF ~ W such that T = RQIF. Now R is a 

lattice homomorphism, since both T and Q are, and [[R[[ _< [[T[] _< 1. We claim 

that p(RQg) >_ [[Qg[[ for all g E F.  Suppose g = (gii) e F, and [[Qg[[ = 1. We 

may assume that  there exist sequences of natural numbers (i'(1)), (j'(l)) such 

that  (i'(l)) increases to oo, and [Igi,(Oj,(l)HLl = 1 for all I. Recall the sequence 

(fk) chosen in the proof of Proposition 2. Given ~ > 0, there exists a sequence 

(k(l)) in N such that fk(o �9 ~J,~ Ai'(0,f(0,n, 

IIA( )ItL  
supll lgv(0, i , (0I-  fk(oHn' < ~7 and sup < oo. 

t - t Mi,(t),i,(t) 
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Let r  fk(O, and r  gi'q),j'(t) if ( i , j )  = (i '( l) , j ' ( l)) ,  l C N, and r  r  

0 otherwise. Then r = ( r  and r = ( r  are both in F,  and I1r Ir <- r]. 

Since IITII _< 1, 
p(Zr = p(TIr > p(Zr - r/. 

Then 

Igl >- r ~ ITgl >-- T r  =::=v p(Tg) >_ p(Tr :> p(Tr - r/. 
2 n 2 n 

For a given l, write fk(l) = ~-'~m=l amx[(m-1)/2.,,~/2,) for some (a,~)m=l, and 

some n. Note that i(k(l)) = i'(l), j (k( l ) )  = j '(l) ,  and n(k(l))  = n. By definition 

of T, for 1 <_ m _ 2 n, (s, t) C Bk(0,m, ITr t)l = a,n/s. In particular, bk(l) < 
2 n ]Tr < ri,(t)bk(t) for (s, t) �9 U,n=lBk(o,m. Therefore, 

2" 

~(t) <_lTd~[<_rl,(t)bk(t) ~(~),,~ 8 

2 n 
a m  

= E V late(t) = Ilfk(t)HL1 lnrv(,). 
r n = l  

Since limt ri,(0 = oc, we see that p(Tr >__ limsup t I[fk(t)l[L' > 1 --r/. As r />  0 is 

arbitrary, it follows immediately that p(RQg) = p(Tg) > 1. | 

Observe that  if M = (Mij) and M'  : (M~j) satisfy supj Mij = supj M~j = oo 

for all i, then each of QFM and QFM, is isometrically lattice isomorphic to a 

sublattice of the other. For the remainder of this section, let 

Mij = ( i+  1 ) j / l n ( i +  1) for all i , j  C N. 

The next result and Theorem 3 together show that QF = QFM is a maximal 

sublattice of W. 

THEOREM 4: There is an isometric lattice isomorphism from W into QF. 

Pro@ Given f E WeakL 1, let gij = fX{j<lll<(i+l)j)/ln(i  + 1) for all i , j  E N. 

It is easy to see that g = (gij) E F, and that 

(3) I[Qgll = lim sup sup Ilgij IlL' = P(f).  
i--~oc j 

Consider the mapping L: WeakL 1 --+ QF defined by L f  = Qg. It follows from 

the proof of the Key Lemma 2.3 in [3] that L is linear. NOW (3) tells us that the 

map L: W --+ QF,  L ( f  + N)  = L f ,  is well defined and a linear isometry. Also, 

L(If  § NI) = Llfl = Qlgl = IQgl = ILfl = IL(f  + N)I. 
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Hence L is the isometric lattice isomorphism sought. | 

THEOREM 5: There exists an isometric lattice isomorphism from W into W. 

Proof: It is easily verified that the set 

D = {Qg: g = (g,~) �9 e~(t~ llgzjllL ~ < Mzj for a l l i ,  j} 

is closed in e~(l~176176176 Let L: W ~ QF be the isometric lattice 

isomorphism given in Theorem 4. By definition of L, L(W) c_ D. Now there 

is a unique continuous linear extension L#: W --+ t~176176176176176 of L. 

Since L(W) C D, and D is closed, L#(W) C_ D C_ QF. Obviously, L # is an 

isometric lattice isomorphism. Let R: QF ~ W be the isometric lattice isomor- 

phism constructed in Theorem 3, then RL # is an isometric lattice isomorphism 

from W into W. | 

2. Rearrangement  invariant spaces 

In this section, we show that if E is a rearrangement invariant space in the sense 

of [4, w then E is isometrically lattice isomorphic to a sublattice of W. The 

result is inspired by Theorem 4 in [5], where it was shown that  the WeakL p 

spaces defined on separable measure spaces are isometrically lattice isomorphic 

to sublattices of W. We provide the proof only for the rearrangement invariant 

spaces defined on [0, oc). The proofs for the measure spaces [0, 1] and 51 can be 

obtained by making some obvious adjustments. Recall that if E is a rearrange- 

ment invariant space (or, more generally, a Kbthe function space [4, Definition 

1.b.17]), every measurable function h such that h f  is integrable for all f �9 E 
! 

defines a bounded linear functional x h on E by XCh(f) = f fh. Such functionals 

are called in tegra ls .  Every simple function generates an integral on E. 

LEMMA 6: Let E be a rearrangement invariant space on [0, oc). There exists 

a sequence of simple functions (hi) such that [[x~, [I -< 1 for all n, and [[fl[ = 

limsupi_~o~ ] f fhi] for all f E E. 

Proof: Let ~ be the collection of all simple functions of the form 

k 

h = ~ ajx[ci_~,cj), 
j = l  

where k C N, k k (cj)j= o are co (aj)j=l, rational numbers, and 0 = < cl < " "  < ck. 

Define 9Vl to be the subset {h E ~" : I]x~ll _< 1}. We claim that for any f �9 E,  
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and any e > 0, there exists h �9 ~:  such that [ f f h [  > [[fH - e. Let f �9 E and 

e > 0 be given. By definition of rearrangement invariant spaces, there exists an 

integral x~ �9 E '  such that [Ix~][ _< 1, and [x~(f) I = [flg[ > [ [ f H - e / 2 .  Let 

(g,~) be a sequence of simple functions which converges to g pointwise, and such 

that  [g,[ _< [g[ for all n. By the Lebesgue Dominated Convergence Theorem, 

lin~ f fgn = f fg .  We may thus assume additionally that g is a simple function. 

It is easy to see that  there exists h e ~" such that I f  fh[ >__ I f  f g l - e / 2  > [[fl[-~, 
and that h* _< g*, where h* and g* are the decreasing rearrangements of thl and 

[gl respectively. Thus [Ix~[I <_ [[x~H <_ 1. Therefore, h �9 ~'l, as desired. 

Since W: is countable, we can arrange for a sequence (hi) so that  each element 

of ~'l appears infinitely many times in the sequence. Clearly the sequence (hi) 

fulfills the conditions of the lemma. | 

THEOREM 7: Every rearrangement invariant space E on [0, co) is isometrically 

lattice isomorphic to a sublattice of  W.  

Proo~ We will show that E is isometrically lattice isomorphic to a sublattice of 

QFM for some suitably chosen double sequence M = (Mij). Then, by Theorem 

3, E is isometrically lattice isomorphic to a sublattice of W, which in turn is 

isometrically lattice isomorphic to a sublattice of W by Theorem 5. 

Let (hi) be the sequence given by Lemma 6. Since hi is a simple function, 

there exis ts0 < ai < oo such that supphi c_ [0, ai]. For f �9 E, i �9 N, and 

t �9 [0, 1], define fi:(t)  = aJ(ait) lhi(ait) l .  Also let f o  = 0 for all i �9 N and all 

j > 1. Clearly 

fO0 ai fo ~ (4) IlfilllL' = If(u)h,(u)l du -- If(u)hi(u)l du. 

Thus IlfilHL' <- Ilfll 'llXlh, llt = Ilfll" IIX~,I[ <-- I[fll for all i. Hence (f~j) �9 
/~176176176 The map T: E ~ t~176176176176176 defined by T f  = Q(s  
is easily seen to be a lattice homomorphism. It follows from the preceding calcu- 

lation that IITII <_ 1. On the other hand, by equation (4), 

limsupsup llfolIL, = limsupllfiiHL, = limsup f JI ,l l f I ,l >_ :i ll. 
i j i �9 �9 

Therefore, T is an isometry. To complete the proof, it suffices to produce a 

sequence (Mi) such that lir~ Il f i lx{If ,  t>M~}llL1 = 0. For then, if we define 

Mil = max{Mi, 1}, and M O = 1 for j > 1, it is easy to check that T E  C_ QFM, 

where M = (Mo).  
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Let K / =  [[hi[[L~O for all i. First note that for f �9 E, Hf[I >- f~ if(t) dt; hence 

cA{]f[ > c} < I]f]] if c > ]]f]l. Therefore, if c > aiK/l]f]], 

A{If/ll > c} < A t :  If(ad)l > 

___ K-AII/II. 
c 

CASE 1: s u p i K i = K <  cx3 

Let (M/) be any sequence such that Mi/a/~ ~ .  Let f �9 E. For all i such that 

M~ > a/KII/ll, ~{I//11 > M/} _< Kll /II /M/by (5). Hence 

f 
Kl l f l l /Mi  

[If/xX(If, II>M,}IIL1 < y*l(t) dt 
dO 

f 
Kai  II fll/Mi 

< f *  ( t )h~  ( t )  d t  
JO 

f 
K a d l l l l / M i  

< K f*(t) dr. 
Jo 

Since f~ f*(t)dt  <_ tl/11 < ~ ,  we obtain that l/m/IIf.x{IS, ll>M,}llL1 = O. 

CASE 2: s u p i K i = c ~  

For each i, choose bi > 0 such that hi(hi ) > Ki/2. Then, for all f �9 E, 

(6) K/fob' fo b. -~ f*(t)dt < /*(t)h~(t)dt <_ II.t'll 

since IIx~; II = Ilx~, II --- 1. Let (ni) be chosen so that lirra K//Kn~ = 0. Now let 
(Mi) be a sequence such that (aiKi)-tM/ > max{i,i/bn,} for all i. If f �9 E,  

and i > II/11, then ~{Ifill > Mi} < K/II/II/M/by (5). Therefore, 

f 
Ki IIIII/M~ 

II//xX~IS.I>M,}IIL1 - /~*~(t) d t  
,to 

f 
a~Kdl f l l /Mi  

<_ K~ /*(t) dt 
J0 

l b . ,  

<_ Ki ]. f* (t) dt 

< 2g/ll.fll by (6). 
- Kn~ 

I t  follows tha t  lifo4 [If/xX(If, ll>M,}llL~ = O. | 
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Theorem 7 can be extended to certain rearrangement invariant spaces defined 

on non-separable measure spaces. Endow the two-point set i - l ,  1} with the 

measure which assigns a mass of 1/2 to each singleton set. For any index set 

I,  denote by # the product measure on {-1, 1} I. If I is countable, {-1,  1} I is 

measure isomorphic to [0, 1]. For the remainder of this section, fix an index set 

I which has the cardinality of the continuum. For each i E I, let ci : i - l ,  1} I -+ 

{-1,  1} be the projection onto the i-th coordinate. If J is a finite subset of I,  and 

= (~)~eJ E {-1,  1} J, define Cj,~ to be the function l l i e j  X{~,=~,} on i - l ,  1} I. 

Let (I~j be the span of the functions ir : ~ E {-1,  1}J}. It is not hard to see 

that the set �9 = U i ~ J  : J c I ,[JI  < co} is a vector lattice (with the usual 

pointwise operations and order). Define E by 

E = i  f = ( f i ) i e l : f i E r  for al l i ,  f i # 0  for at most finitely manyi} .  

Similarly, let E j  consist of all f = ( f i ) i e l  E E such that f~ E ~ j  for all i. 

Then E is a vector lattice with the coordinatewise operations and order, and 

E = U { E j  : J C_ I,[J[ < oo}. A n o r m  [[.[[ on E is called a l a t t i ce  n o r m  if 

If[ _< [g] implies []f[[ <: [[gi[. For f = (fi) E E, let the d i s t r i b u t i o n  func t ion  df 

o f f  be defined by df(t) -- ~iel /~{lf i l  > t}, t >__ 0. 

THEOREM 8: Let [[. ][ be a lattice norm on E which is rearrangement invariant in 

the sense that f, g E E, df = dg implies [[f[[ = [[g[[. Then (E, ][. [[) is isometrically 

lattice isomorphic to a sublattice of W.  

Of course, it follows that the completion of E, E, is isometrically isomorphic to 

a sublattice of W. Since W is isometrically lattice isomorphic to a sublattice of 

W by Theorem 5, the same is true for E. This leads immediately to the following 

corollary. 

COROLLARY 9: I f  1 << p < oo, then gP(I, LP({-1,1}I)) is isometrically 

isomorphic to a sublattice of W.  

As indicated above, L 1 may be identified (as a Banach lattice) with 

L1({-1,  1}z). This identification will be in force for the rest of the section. For 

each k E Z, let rk: i - 1 ,  1} z --+ i - 1 ,  1} be the projection onto the k-th coordinate. 

Select a bijection 7: I ~ {-1,  1} N. Thus, for every i E I, 7(i) = (~(i, k))~=l, 

where 7(i, k) = • for all i E I, k E N. Finally, for every i, pick a strictly 

decreasing sequence of negative integers ki = (ki(m))~= 1 such that 

�9 for each m, ik~(m) : i E I} has only finitely many distinct values; 

�9 i f i  # i', then {m: ki(m) = ki,(m)} is finite. 
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Given a finite subset J of I,  (f �9 {-1,  1} J, i �9 I,  and m �9 N, define, on {-1,  1} z, 

m 

k=l jEJ 

The mapping Tj,,n: E j  -+ L 1 is defined by 

Tj, m f =  E E a(i,5)r 
iEl 6E(--1,1} J 

for all f = (fi)iez �9 E j,  where f i  = )-'~6e{-1,1}J a(i,5)r Let us remark that 

the sum over i is in fact a finite sum, since fi = 0 for all but finitely many i. 

It is clear that  Tj,,n is linear. If I0 and J are finite subsets of I, there exists 

mo = mo(Io, J) �9 l~i such that 

�9 (7(i, 1 ) , . . . ,  7(i, mo)) r (7(i', 1 ) , . . . ,  7(i', mo)) if i, i' �9 Io, i r i', 
�9 kj (m) ~ kj, (m) whenever j, j '  �9 J, j ~ j ' ,  and m _> m0. 

The following [emma is easily verified by direct computation. 

LEMMA 10: Let Io, J1, and J2 be finite subsets of I such that Jt c_ J2, and let 

m >_ mo(Io, J2)- It" 

or  

a ( i , a ) r  = all  i �9 I0, 
5e1-1,1}:1 ye{--1,1} J2 

iElo 5E{-1,1)Jl iElo UE{-1,1)J2 

then for all ~ E {-1,  1} J2, and all i E Io, b(i, 77) = a(i, 5), where 5 -- ~?IJl- 

An obvious consequence of the lemma is the following proposition. 

PROPOSITION 11: Let Io, J1, and J2 be finite subsets of I such that J1 C_ J2, 
and let m >_ mo(Io, J2). I f  f = (fi)iel E Ej~, and fz = 0 for all i ~ Io, then 

T j  1,mr = Tj2,mf. 

For each f E E, choose a finite subset J ( f )  of I such that  f E Ej(t). Given 

a double sequence (hm,,) of non-negative measurable functions on {-1,  1} z such 

that  supmn [[TJ(o.mf " hmnllLt < c~ for all f E E, consider the (non-linear) 

mapping T : E -~ g ~ ( ~ ( L 1 ) )  defined by T f  -- (Tj(f),mf" h,~n),,,~. 

PROPOSITION 12: Let Q: l~(gr _~ g~(g~(L1))/co(tOO(L1)) be the 
quotient map. Then QT is a linear lattice homomorphism. 
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Proof: Let f = (f,)~el, g = (g~)~e~ 6 E,  and let a 6 R. Choose a finite subset 

I0 of I such that f~ = 0 = g~ if i ~ I0. Define J = J ( f )  U 3(g) U J ( a f  + g). If 

m >_ mo(Io, J) ,  then, for all n 6 1%1, 

Tj(af+g),m(af + g) �9 h,n,, =Tz, m(af  + g) �9 hm, by Proposition 11 
= (~Tj, mf" hmn + Tj, mg .  hmn by linearity of Tj,m 
=aTj ( f ) , ,n f 'h ,~u+Tj (g) ,mg"  hmn by Proposition 11. 

Hence Q T  is linear. Now let J '  = J ( f ) U  J([f]). Note that the functions 

{r : i  6 I0,~7 e {-1,  1} J'} are pairwise disjoint if m h mo(Io, J ') .  Thus 

TJ',mlfl = [Tj,,mfl for all m >_ mo(Io, J') .  For all such m, and all n 6 N, it 

follows from Proposition 11 that 

ITj(f),mf'hm,,I = [Tj(f),mfl'hmn = [Tj , , ,~f l .h ,~, ,  = TJ , , .~ l f l . h .~ .  = TJ(Ifl),mlf['hm,,. 

Therefore, [QTfl = QTIfl ,  as required. I 

Given m E N, the set Km = {k~(m) : i E I} is a finite subset of negative 

integers. Let K'~ = {1 ,2 , . . . ,m}  U Kin. If 77 = (77k) E {--1,1} g ' ,  let Cn,m 
be the function 1-Ikeg- X{r~=nk} defined on {-1 ,  1} z. Associate with each real 

sequence c = (c~)~e{_l,1}K- a function hc = ~'~e{_1,1}~- cn~n,m. Also, for each 
m, choose subsets Im and Jm of I such that [Im[ = 2 m, and IJml = IKm[. There 

exists a bijection 7rm: I,~ • {-1 ,  1} g" --~ {-1 ,  1} g ' .  Given c = (cn)ne{_l,1}K-, 

define hc = (h~,c)iel by hi,c = ~reI_l ,1}J~ c~,~(~,~)r for i 6 Ira, and h~,c = 0 

otherwise. 

LEMMA 13: Let f = ( f i ) ieI  E E,  and let Io be a finite subset of  I such that 

fi  = 0 if  i q~ Io. I f  m > mo(Io, J(f ) ) ,  and c = (C,7),e{_I,1}K--, then there exists 

~* = (h,)~el, such that ds = dhc, and HTj(f),,~f �9 hcHL* = ~ i e I  f Ifihi[. 

Proof'. Write ~fi = ~e{_l ,1}J( t )  a(i, 6)(~j(f),  6 for all i E I0. There exist pairwise 

disjoint subsets {Ci,6 : i 6 I0,5 6 {-1 ,  1} J(e) } of {-1 ,  1} g'-, , each of cardinality 

2 IKml-IJ(f)l, such that CJ(f),&,,m = 2m ~nec,.~ ~n,m. Then 

IITa(f),mf. h ilL, = la(i,6)c l 
21g.,I 

i6Io 66{-1,1} J(f) y/6C~,6 

Since m >_ mo(Io, J( f ) ) ,  II01 <_ 2 m, and ]J(f)l -< IKml �9 Choose subsets I1 and J "  

of I such that I0 n 11 = q), II0 U Ili = 2 m, J ( f )  C_ 3" ,  and I J ' l  = IKmI = IJm[- 
For i E I0, 5 E {-1 ,  1} g(f), there exists a bijection u~,~ : C~,~ ~ {7- E {-1 ,  1} J :  : 
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TIj ( f  ) = 5}. Define hi = ~-~hE{_I,1}J(r c~7r for i E Io. Fina l ly ,  

there is a bijection 

fl: I1 x { -1 ,  1} ys -+ { -1 ,  1}K~\ U {Ci,~ : i E Io,5 e { -1 ,  1}J(r)}. 

Define /~i = ZTe{_l ,1}J~n c~(i,r)r for i E I1. Then let hi = 0 if i ~ Io U I1. 

It is s t raightforward to check tha t  1~ = (h~)icl fulfills the requirements of the 

lemma. | 

For all m E N, let Bm be the collection of all non-negative rational sequences 

c = (cn),Te{_l,liK- ' such tha t  Y'~ie1 f If, hi,~l <-- Ilfll for all f = ( f i ) i c i  E E. Let us 

note tha t  if c E Bin, and h = (hi) ic l ,  ds = dh~, then, due to the rearrangement  

invariance of the norm on E,  ~ i e l  f [fihil _< Ilfll for all f E E.  

PROPOSITION 14: Let f = (fi)iCl E E,  and let I0 be a finite subset of I such 
that fi = 0 for ali i r Io. For all m > mo(Io, J ( f ) ) ,  

sup IlZj(f),mf" h~llL~ = Ilfll. 
cEBm 

Proof'. By Lemma 13, tbr any c E Bin, there exists h = (tLi)icl such tha t  

dr, = dhc, and IIrj(f),mf" hcllL' -= ~,~I  f If~h~l. The last sum is _< Ilfll by the 

remark  preceding the proposition. Conversely, for any e > 0, there exists x I E E I, 

[Ix'll _< 1 suct~ tha t  [x'(f)l > (1 - e)lJfll. For io E Io, and (f E { -1 ,  1} J(r), let 
xio,~ = (xi) E E,  where xi = Cj(f),~ if i = io, and xi = 0 otherwise. Set b(i, ~) = 
21J(f)lx'(xi,~) for i E Io, (f E { -1 ,  1} J(r). Write fi = ~ee{_l , t i~(f)a( i , ( f ) r  

for i E Io. Then  

( 1  - e)ilfll < Ix'(f)l __% ~ 
iE lo (fE{-1,1}J(f) 

la(i,5)b(i, 5)[ 
21J(f)l 

Hence, there exist non-negative rational numbers c(i, 5) such that  c(i, 5) <_ [b(i, 5)1, 

and 
la(i, 5)1~.(i, 5) 

( 1  - c)lIfll < Z Y~ 21J(f)' 
iElo 5E{-1,1}J(f) 

Define g = (g/)zel by gi = ~he (_ l , lV( f )  c(i, ?i)r for i E I0, gi = 0 otherwise. 

If p = (pi)ie~ E E,  define P j ( f )p  = (qi)~el, 

5El-l,1}J(r) 
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By a standard argument, using the rearrangement invariance of the norm on E, 

we see that ]]PJ(f)PH <-]IP]I. Hence 

(7) ~ / I p ~ g , I  < Ix'l(ey(f) lpJ) <_ llpll, 
iEIo 

From the proof of Lemma 13, there are pairwise disjoint subsets 

{Ci,6 : i �9 10,5 �9 { -1 ,1}  J(f)} of { -1 ,1}  g~,, each of cardinality 2 Ig'~l-IJ(f)l, 

such that  if we let c, 7 = c(i,5) for all ~? �9 Ci,~, i E Io,5 �9 {-1,  1} Jff), and c~ = 0 

otherwise, then for c = (%),C{_I,l lK-,  

I[TJ(f),mf" hcliL' = E E 
iElo 5E{-1 ,1IJ ( f )  

la(i,~)lc(i,a) 
2JJ(f)l > (1 - e)llfil. 

Note that dhr :dg .  It follows from (7) that ~-,~elo f Ip~hi,cJ ~ I[Pll for all 

P = (P~)~eI �9 E. Thus c C Bin. Since e > 0 is arbitrary, we obtain the reverse 

inequality 

sup IlTj(f),mf. h=llL, > Ilfll. 
cE B,n 

This completes the proof the proposition. I 

We are now ready to prove Theorem 8. For each m E N, Bm is countable. 
(3O Hence we can list the functions {he : c E Bin} as a sequence (hm,~),,=l. Define 

the map T: E --+ i ~ ( t ~ ( L 1 ) )  by T f  = (Tj(f),mf'h,n,~)m,,. By Proposition 12, QT 
is a lattice homomorphism, where Q: ~~176163176176 -+ l~176176176176176 is 

the quotient map. It follows from Proposition 14 that QT is an (into) isometry. 

Finally, note that in the notation of Lemma 13 and Proposition 14, 

Tj(f),mf" hc E span{~,,m: ~ 6 { -1 ,1}  K ' }  

for all c C Bin, m >_ mo(Io, J(f ) ) .  Hence 

[ITj(f),mf' hcliL~ ~_ 2lg:i[[TJff),mf " hc[[L'. 

Thus Q T f  �9 QFM, where M = (Mmn), Mmn = 2 IK'I for all m and n. An 

appeal to Theorem 3 yields the desired result. 

3. Order isometry 

Following [5], we say that a linear operator T from a Banach lattice E into a 

Banach lattice F is an o r d e r  i s o m e t r y  if Tx  >_ 0 if and only if x :> 0, and 

]]Txil -- Iix]l for all x C E. In [5], it is shown that if E is a separable Banach 



262 D.H. LEUNG Isr. J. Math. 

lattice, and E'  has a weak order unit, then E'  is order isometric to a closed 

subspace of W. Here, we show that the assumption that E '  has a weak order 

unit can be removed. 

Let F =  {-1,1} N. I f m E N ,  a n d C E @ m = { - 1 , 1 }  re,let 

r ~ = { T e r : T l { x  ..... m}=r 

PROPOSITION 15: There is an order isometry from t~176163 onto a closed 

subspace of ((~ s ((I)m))to~/((~ ~1 ((I)m))co �9 

Proo~ Partition N into a sequence of infinite subsets (Ln)n~176 If a �9 t~176 

write a = (a~), so that Hall = sup,~]Te rla~[ < oo. Given m �9 N, and 

r �9 r define br = )--~--yer, a~, where n is the unique integer such that  m �9 

Ln. Define the map U: t~176 ~ ((~)/l(~m))too by Ta = b, where b = 

((br162 (br162162 Clearly T is a positive linear operator. Note that  if 

m E Ln, then 

~bE ~,n CE~,n 7EFr ").EF 

Hence [[T[] _< 1. Let Q: ((~)tl(C~m))t~o --+ ((~)ll(r be the 

quotient map. Then QT is positive, and []QT[[ <_ 1. We claim that QT is an 

order isometry. 

If QTa = Qb > O, then l im,~oo ~{b~ : r E ~m,br _< 0} = 0. If a ~ 0, then 
no < 0. List the elements of Lno in ascending there exist no and 7o such that aTo 

order: Lno = { m l  < m 2  < ' " } .  For a l l r E N ,  letr =7o1( l ..... m~}. Then 

E no <0 .  lim br = lim a~ ~ = a.yo 
}"-4,00 r --~ OO 

Thus 

E no < 0, lim b~ <_ a~o 
I" ---) o o  

C E ~ ' m r  

%_<0 

a contradiction. Therefore, a > 0. 

Now, assume licit > 1. Then there exists n such that Y]-Ter [a~[ > 1. Given 

> 0, choose a finite subset F1 of I" such that 

7EF~ ~F~ 
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Choose m E Ln so that  if we define r = 71{1,...,m} for all " /~ F, then r ~ r 

for all 7 ,7 '  E F1, 7 r 7'. For ~ E F1, 

-yEFr 

Therefore, 

Since e > 0 is arbitrary, ]IQTa]I > ]la]l, Since ]IQT]I < 1 as well, we conclude 

that  QT is an isometry. | 

LEMMA 16: Let E be a separable Banach lattice. Then E' is isometrically lattice 
isomorphic to a sublattice ofg~176 L1)). 

Proof: By the proof of Lemma 3 in [5], for any x E E, x > 0, there exist a 

compact Hausdorff space K,  and a lattice homomorphism S: C(K)  -+ E such 

that S' is a lattice homomorphism, [0, S'x'] is weakly (and hence norm) separable, 

and IIS'x'll = Ix'l(x) for all x' E E'. Note that E' ,  and hence S'E' ,  has a 
dense subset of cardinality < IF]. Since S'E'  is a sublattice of the AL-space 

M ( K ) ,  has separable order intervals, and has density < IFI, it follows that  S'E'  
is isometrically lattice isomorphic to a sublattice of gl(F, L1). Now let (xn) be 

a positive sequence in the unit ball of E such that Hx'l] = sup,  Ix'](xn) for all 

x' E E'.  For each n, there exists a lattice homomorphism Rn: E '  --+ gl(F, L l) such 

that HP~x'II = Ix'l(xn) for all x' e E'. Clearly, the map R: E '  ~ g~(gl(riL1)) 
defined by Rx'  = (Rnx')~n=l is an isometric lattice isomorphism. | 

THEOREM 17: Let E be a separable Banaeh lattice. Then E' is order isometric 
to a closed subspace of W. 

Proof: For any n E N, let E,~ be the conditional expectation operator on L 1 with 

respect to the a-algebra generated by the sets {[(k - 1)/2'*, k/2 n) : 1 < k < 2'*}. 

Then the map V: gl(F, L l) -+ ( ~ = 1  gl( F, E,,L1))t~ defined by V((f~)~er) : 

((E,J~)~er)n~__l is an order isometry. Since gl(F, EnL 1) is clearly isometrically 

lattice isomorphic to gl(F), it follows that ~ ( ~ I ( F ,  L1)), and hence E' ,  is order 

isometric to a closed subspace of g~176 which in turn is order isometric 

to a closed subspace of (~tl((I) ,~))t~/(~gl((I)m))co by Proposition 15. It is a 

simple exercise to check that the latter space is isometrically lattice isomorphic 
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to a sublat t ice  of QFM for a sui tably chosen M = (Mij) .  Finally, QFM is 

isometrically latt ice isomorphic to a sublat t ice of W by Theorem 3. | 
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