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ABSTRACT

The space WeakL' consists of all Lebesgue measurable functions on [0, 1]
such that
a(f) =supe{t: |f(t)| > c}
c>0

is finite, where A denotes Lebesgue measure. Let p be the gauge func-
tional of the convex hull of the unit ball {f : ¢(f) < 1} of the quasi-norm
g, and let N be the null space of p. The normed envelope of WeakL?,
which we denote by W, is the space (WeakL! /N, p). The Banach envelope
of WeakL!, W, is the completion of W. We show that W is isometri-
cally lattice isomorphic to a sublattice of W. It is also shown that all
rearrangement invariant Banach function spaces are isometrically lattice
isomorphic to a sublattice of W.

Introduction

Let (2, %, u) be a measure space. The space WeakL!(y) consists of all (equiva-
lence classes of almost everywhere equal) real-valued ¥-measurable functions f
for which the quasinorm

qo(f) = i;lgcu{w | f(w)| > e}

is finite. This space arose in connection with certain interpolation results, and
is of importance in harmonic analysis. If (Q,%,x) is purely non-atomic, the
maximal seminorm p on WeakL!(p) was found in [1] and [2] to be

p(f) = lim sup /<m< |fidp / In(q/p).
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The normed envelope of WeakL!(y) is the normed space

W(p) = (WeakL'(u)/N, p),

where N denotes the null space of the functional p. The Banach envelope is
the completion W of W(g). In this paper, we consider (up to measure iso-
morphism) only the measure space [0, 1] endowed with Lebesgue measure A. We
denote W()) and W(A) by W and W respectively. Peck and Talagrand {6]
showed that W is universal for the class of all separable Banach lattices with
order continuous norm. Recently, Lotz and Peck [5] showed that W contains
isometrically lattice isomorphic copies of certain sublattices of £>°(L'). (Here
and throughout, L! means L![0,1], up to isometric lattice isomorphism.) From
this, they deduced that every separable Banach lattice is isometrically lattice iso-
morphic to a sublattice of W. In this article, we show that there is a sublattice
G of £2°(4°(LY))/co(€°(LY)) such that G, W, and W mutually isometrically
lattice isomorphically embed in one another. It is also shown that all rearrange-
ment invariant Banach function spaces in the sense of [5] are isometrically lattice
isomorphic to sublattices of W. For further results regarding the structure of
WeakL(y), we refer the reader to [3]. Unexplained notation and terminology on
vector lattices can be found in [7]. If E is a Banach lattice and I is an arbitrary
index set, let £P(I, E), 1 < p < 00, respectively, co(I, E), be the space consisting
of all families (z;);es such that z; € E for all 4, and (||z:l|)ics € €°(I), respec-
tively, co(I). We write £P(E) and ¢o(E) for these respective spaces if the index
set I = N. Clearly ¢P(I, E) and co(I, E) are Banach lattices. The cardinality of
a set A is denoted by |A].

1. The spaces W and W

If f is a real-valued function defined on a set €, let the support of f be the set
supp f = {w € Q : |f(w)| > 0}. Furthermore, for real numbers p < g, we write
{p<f<q}fortheset {weQ:p< fw)<gq}

LEMMA 1: Let (hx) be a sequence of disjointly supported Lebesgue measurable
functions on [0, 1]2. Suppose there exist 8, > 0 and strictly positive sequences
(ak), (Bk) such that

1. ax < Bk < ag4 for all k,

2. limg o = limg B = 00,

3. In(aks1/Bk) 2 (k+1)5—, [ hj for all k, and

4. day < hg(s,t) < 90 for all (s,t) € supp h.
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If1<p<q<oo,q/p>dan, and h denotes the pointwise sum 3 h, then

h<—1n-—+sup/ hy.
/psn<q N " & Jpchasq

Proof: If [8ax, 78] N [p,q] = 0, fPShkSq hiy = 0. So we may assume that the
said intersection is non-empty for some k. Since dag — oo, {6ak, vBk] N [p,q] # @
for at most finitely many k. Let m and n be the minimum and maximum of the
set {k : [ox,vBk] N [p,q) # 0} respectively. We consider two cases.

CASE1l: m=n.

In this case,
/ h= / hm < sup / h.
p<h<q p<hm<q k Jp<hi<q

CASE 2: m<n.
Note that p < 48, and ¢ > day,. Therefore,

n 4 >lnﬂn_ >n2fhk

Now q > épan > day; hence n > N. Thus
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Write any element g € £°(£>°(L!)) as g = (gi;), where g;; € L* for all ¢, j, and
sup; ; ||gi;llz1 < oo. For any double sequence of numbers M = (Mi;) such that
M;; > 1 for all 4, j, let F = Fi be the (non-closed) lattice ideal of £°(£°(L?))
consisting of all g = (gs;) € £°(£°(L")) such that sup; ; ||gijllLe/Mi; < oo.
For the next result, we follow the idea of Lotz and Peck [5] in considering the
WeakL! space defined on the unit square [0, 1]? endowed with Lebesgue measure.
Since [0, 1] and [0, 1]? are isomorphic measure spaces, their corresponding WeakL!
spaces are isometrically lattice isomorphic; the same holds for the respective
normed and Banach envelopes.
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PROPOSITION 2: There exists a lattice homomorphism T : F - W of norm <1
which vanishes on F N co(£%°(LY)).

Proof: Choose positive sequences (€,) and (r;) with limits 0 and oo respec-
tively so that r; > 1 > ¢, for all ¢ and n. For each n, let E, be the condi-
tional expectation operator on L! with respect to the o-algebra generated by
(B2, 2):1<m < 2%} Ifi,5,n € N, let Ayjn be a countable set which is
dense in

{f €EBaL': || flly =1, € < f<nMy)

with respect to the L®-norm. For each f € Ajjn, let (am( f))f,:‘:l be the
coefficients such that
2“

=Y an(Xim-1)/27m/2n)-

m=1
Note that €, < ap(f) < 2" for 1 < m < 2". Arrange |JAij» into a se-
quence (fx). For each k, determine i(k), j(k), n(k) such that fx € Ayx) jk)n(k)-
Choose a positive sequence (bx) so that if we define ay = bp/2*®), and By =
Mi(k),j(k)ri(k)bk/fn(k)) then ax < Bi < agq1, limg ap = co = limg Sk, and

k
In 2541 >(k+1) Zlnri(,).
Br Py

Let g = (gi;) € F, and k € N. Define a function hx on [0,1)? by

2n(k)

gi(k), (k) (1)
he(s,t) = S ZEIB
m=1 $
where
_ . am(fk) am(fe) m—1 m
Bim = {(s,t). —" <s< b 20 <t< ol [

The map S defined by Sg = 3~ hi, where the sum is taken pointwise, is a linear
map from F into the space of Lebesgue measurable functions on [0, 1]%. Notice
that

2n(k)
am(fk) am(fx) }
hi C i) ——— <8< ————
supp hx gl{(s ) e b

<8<

C{(s,t):
_{(s Ti(k) bk by

n gn(k)
t): = }
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Hence the hy'’s are pairwise disjoint. As the sets Bgm,1 < m < 2¥) are also
pairwise disjoint for each k, it follows readily that S is a lattice homomorphism.
Suppose g € F, |lgll = sup, ;|lgi;llzr < 1, let us estimate the p-norm of the
function Sg. In the first instance, let us assume additionally that there exists
6 > 0 such that g;;(t) > 6 for all 4,5, and ¢. Set v = sup, ; ||gjllLe/Mi;. If
(s,t) € supp h, then

it (E My
b gimaw(®) _ ha(s, 1) < TLi098)
S S S
and .
Miwswy _ &gy _ 20 _ 1
Br Ti(k) bk bi ag
Hence
dak < hi(s,t) < vBk.
Moreover,
n(k) am (g)
2 LR Gigk).ice) (t)
s IO
m—1 am ;ﬁ
m=1"% 3nlk) Ti(k)%k y
on (k) e
2“
(1) = L 8ik,ie) (8) dt Iy
m=1" Jn7ky
= |giky, iyl In7igey < Invygry
Therefore,

k
ag+1 (k+1) Zlnr,(l (k+1) Z/
=1

By Lemma 1, if ¢/p > dan, and p > 1, then

Sq<—ln—+sup/ hg.
/pssg<q N bk Jpchiga

If ¢/p > dan and 0 < p < 1, then, using Lemma 1 again,

1
/ Sgg/ Sg+/ Sg<1+—ln:y—g+sup/ hi.
p<Sg<q p<Sg<1 1<Sg9<q/p N bp & Jich<ap

Hence

(2) lim sup / Sg/In(q/p) < hm sup sup/ hi/In(q/p).
p<Sg<q p<hi<q

n—=00 g/p>n o g/p>n k
p.q>0 P.g>0
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1 gty )/P g 0 0 [t
/ b S/ /‘ Bitk).itk) ( )dsdt
p<hi<g 0 Jgiky.im(t)/g 8

q q
= ||9; Lk Llln—Sln—.
gik).50l p Sy

Now

Therefore, equation (2) implies that p(Sg) < 1. For a general g = (g;;) € F,
and any 6 > 0, let g’ = (gi;), where g;; = |g;;| + 6. By the above calculation,
p(S9") < |lg’ll = llg]l + 8. Since S is a lattice homomorphism, |Sg’| > |Sg|. Thus
p(Sg) < p(Sg’) < |lgll + 4. As & > 0 is arbitrary, we conclude that p(Sg) < ||g|l.
In particular, applying Lemma 1 in [5], we see that S maps into WeakL!. It
is now clear that the map T' : FF — W defined by Tg = Sg + N is a lattice
homomorphism of norm < 1.

It remains to show that T vanishes on FNcy(¢%°(LY)). By the continuity of T,
it suffices to show that Tg = 0 for all g = (g:;) € F such that there exists ip € N
with g;; = 0 whenever i # 1p. As above, we may assume additionally that there
exists § > 0 such that g ;(t) > ¢ for all j and ¢. If hx # 0, then g;x) k) # 0
hence i(k) = iy. Using (1),

/ hi < / hi < llgl T rsge) = llgll Inrs,.
p<hi<q

. llg|l Inr
Sg) < im sup ———=2 =0.
p( g) T no ",,’Z’g;‘ ln(q/p)

By (2),

Let Q : £°(£2° (L)) = £2°(€°(L))/co(£2(L')) be the quotient map. Since Q
is a lattice homomorphism, G = QF is a sublattice of £2°(£%°(L))/co(£°(LY)).

THEOREM 3: There exists an isometric lattice isomorphism from QF into W.

Proof: Let T be the map defined in the proof of Proposition 2. Since T vanishes
on F N co(£°(L1)), there exists R : QF — W such that T = RQr. Now Ris a
lattice homomorphism, since both T and @ are, and ||R}| < ||T|| < 1. We claim
that p(RQg) > ||Qgl|| for all g € F. Suppose g = (gi;) € F, and ||Qg|| = 1. We
may assume that there exist sequences of natural numbers (i'(l)), (j'({)) such
that (¢'(l)) increases to oo, and [lgi/y,j«@llzr =1 for all l. Recall the sequence
(fx) chosen in the proof of Proposition 2. Given n > 0, there exists a sequence
(k(1)) in N such that fk(l) € Uﬂ Ai'(l),j'(l),m

| feyllze
sup llgorm ool — <n and sup———— < ©
1p Ngw@.irwl = fewller <7 Mo
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Let ¢i; = fruy, and 935 = goy jry if (6,5) = (F(1),5' (D), L €N, and ¢s5 = 9y =
0 otherwise. Then ¢ = (¢i;) and ¥ = (¢;;) are both in F, and ||¢ — [¢|]| < 7.
Since ||T|| £ 1,
p(T) = p(T|pl) 2 p(T¢) -
Then
gl > ¥ = |Tg| > Ty = p(Tg) > p(T¥) 2 p(T4) -

n

For a given [, write fiq) = Efn=lamx[(m_1)/2n‘m/2n) for some (am)f,;l, and
some n. Note that i(k(l)) = ¥'(l), j(k(1)) = 7'(1), and n(k(l)) = n. By definition
of T, for 1 < m < 2%, (s,t) € Biay,m, IT#(s5,t)] = am/s. In particular, by <
ITé(s,t)| < rirybrqy for (s,t) € Uf,::lBk(,),m. Therefore,

am
IT¢| > Z//Bw) = dsdt

= Z 5 e = el Inreq.

/bk(t)S|T¢lS"."u)bk(1)

Since limy 35y = 0o, we see that p(T'$) > limsup || fxqyllzr > 1~7n. Asn>0is
arbitrary, it follows immediately that p(RQg) = p(Tg) > 1. ]

Observe that if M = (M;;) and M’ = (M};) satisfy sup; M;; = sup; M;; = oo
for all 4, then each of QFy and @F) is isometrically lattice 1som0rph1c to a
sublattice of the other. For the remainder of this section, let

My =(i+1)j/In(i+1) foralli,jeN.

The next result and Theorem 3 together show that QF = QFu is a maximal
sublattice of W.

THEOREM 4: There is an isometric lattice isomorphism from W into QF.

Proof: Given f € WeakL', let g;; = fx{j<|fi<(i+1);}/ In(i + 1) for all 4,5 € N.
It is easy to see that g = (g;;) € F, and that

) |Qgl| = limsupsup||gs;l| 2 = p(f).
1—00 7

Consider the mapping L: WeakL! — QF defined by Lf = Qg. It follows from
the proof of the Key Lemma 2.3 in [3] that L is linear. Now (3) tells us that the
map L: W — QF, i(f + N) = Lf, is well defined and a linear isometry. Also,

L(If + NI) = LIf| = Qlg| = |Qg| = |Lf| = |L(f + N)I.
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Hence L is the isometric lattice isomorphism sought. ]
THEOREM 5: There exists an isometric lattice isomorphism from W into W.
Proof: It is easily verified that the set

D={Qg:g=(9;) € £°((>(L"), llgisllee < Mi; for all , 5}

is closed in €%°(¢*°(L))/co(¢(L')). Let L: W — QF be the isometric lattice
isomorphism given in Theorem 4. By definition of L, L(W) C D. Now there
is a unique continuous linear extension L¥: W — £°(£%°(L))/co(£%°(L1)) of L.
Since L(W) C D, and D is closed, L¥(W) C D C QF. Obviously, L# is an
isometric lattice isomorphism. Let R: QF — W be the isometric lattice isomor-
phism constructed in Theorem 3, then RL¥ is an isometric lattice isomorphism
from W into W. ]

2. Rearrangement invariant spaces

In this section, we show that if E is a rearrangement invariant space in the sense
of [4, §2a], then E is isometrically lattice isomorphic to a sublattice of W. The
result is inspired by Theorem 4 in [5], where it was shown that the WeakL?
spaces defined on separable measure spaces are isometrically lattice isomorphic
to sublattices of W. We provide the proof only for the rearrangement invariant
spaces defined on [0,00). The proofs for the measure spaces [0, 1] and N can be
obtained by making some obvious adjustments. Recall that if E' is a rearrange-
ment invariant space (or, more generally, a Kothe function space [4, Definition
1.b.17]), every measurable function h such that hf is integrable for all f € F
defines a bounded linear functional =}, on E by z}(f) = [ fh. Such functionals
are called integrals. Every simple function generates an integral on E.

LEMMA 6: Let E be a rearrangement invariant space on [0,00). There exists
a sequence of simple functions (h;) such that ||z || < 1 for all n, and ||f|| =
limsup;_, . | [ fhi| for all f € E.

Proof: Let F be the collection of all simple functions of the form

k
h= ZGJ’X[CJ-MCJ)’
i=1

where k € N, (a;)5_,, (¢;)%_, are rational numbers, and 0 = cg < ¢; < -+~ < .

Define F; to be the subset {h € F : [|z}| < 1}. We claim that for any f € F,
h
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and any € > 0, there exists A € F; such that | [ fh| > ||f|| — €. Let f € E and
€ > 0 be given. By definition of rearrangement invariant spaces, there exists an
integral zj € E’ such that [lzg|| < 1, and |zg(f)| = | [ fgl > |Ifll — /2. Let
(gn) be a sequence of simple functions which converges to g pointwise, and such
that |gn| < |g| for all n. By the Lebesgue Dominated Convergence Theorem,
lim,, [ fgn = [ fg. We may thus assume additionally that g is a simple function.
It is easy to see that there exists h € F such that | [ fh| > | [ fg|—€/2 > || fll—¢,
and that h* < g*, where h* and g* are the decreasing rearrangements of |h| and
|g| respectively. Thus ||z}, || < ||z4]| < 1. Therefore, h € Fi, as desired.

Since F; is countable, we can arrange for a sequence (h;) so that each element
of F, appears infinitely many times in the sequence. Clearly the sequence (h;)
fulfills the conditions of the lemma. |

THEOREM T7: Every rearrangement invariant space E on [0, 00) is isometrically
lattice isomorphic to a sublattice of W.

Proof: We will show that E is isometrically lattice isomorphic to a sublattice of
QF) for some suitably chosen double sequence M = (M;;). Then, by Theorem
3, E is isometrically lattice isomorphic to a sublattice of W, which in turn is
isometrically lattice isomorphic to a sublattice of W by Theorem 5.

Let (h;) be the sequence given by Lemma 6. Since h; is a simple function,
there exists 0 < a; < oo such that supph; C [0,a;]. For f € E, i € N, and
t € [0,1), define f;1(t) = aif(ait)|hi(a;t)|. Also let f;; = 0 for all i € N and all
j > 1. Clearly

@) furllzs = / | Fwhi(w)] du = / 7 | f@hi(w)] du.

Thus {|fisllze < NI - Nzl = NFIL- lleh, Il < NIfI| for all i. Hence (fi;) €
£°(£2(LY)). The map T: E — £°(£2°(L'))/co(£°(L?)) defined by T f = Q(fi;)
is easily seen to be a lattice homomorphism. It follows from the preceding calcu-
lation that ||T|| < 1. On the other hand, by equation (4),

lim supsup || fi;||z1 = limsup || furll 1 = lim_sup/lfhsl > limﬁuplffhil > || £l
1 J i i i

Therefore, T is an isometry. To complete the proof, it suffices to produce a
sequence (M;) such that lim; | fiixqs.>miyllce = 0. For then, if we define
M;; = max{M;, 1}, and M;; =1 for j > 1, it is easy to check that TE C QF)y,
where M = (M;;).
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Let K; = ||h||p= for all i. First note that for f € E, || f|| > fol f*(t) dt; hence
cM|fl > ¢} <If)l if ¢ > ||f|l. Therefore, if ¢ > a; K;l| f]|,

Mifal > e} <Me:1f @) > 5}

(5) - %/\{lfl >}
K;
< Sl

Casg l: sup; K=K <o
Let {M;) be any sequence such that M;/a; 1 co. Let f € E. For all ¢ such that
M; > a:K||f|l, MIfal > Mi} < K| f||/M; by (5). Hence

K| fll/M; .
fiaxqigaroay o < / fat)dt
Kai|| f)l/M:
s/ FrOR: () dt
0

Kaill fI|/M;
SK/ F*(¢) dt.
0

Since fol f*(t)dt < ||f]| < oo, we obtain that lim; || fi1x{ s> M}l = 0.
CASE 2: sup; K; =00
For each %, choose b; > 0 such that A} (b;) > K;/2. Then, for all f € E,

o pbi b
) S roes [ roxoesi

since ||z, || = [lz}, || < 1. Let (n;) be chosen so that lim; K;/Kn, = 0. Now let
(M;) be a sequence such that (a;K;)"'M; > max{%,i/b,,} for all <. If f € E,
and i > || f||, then A{|fi1] > M;} < K;||f||/M; by (5). Therefore,

K|\ FIl/ M
1L1 < / fi*l(t) dt
0

ai Kl Fil/M;
< K; / £ e
0

by

<K | ft)at
0

(BEVETAISA!

2K|£11
< Tn._ by (6).

It follows that lim; ||fi1X{|f;1|>Mi}|lL1 = 0. [ |
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Theorem 7 can be extended to certain rearrangement invariant spaces defined
on non-separable measure spaces. Endow the two-point set {—1,1} with the
measure which assigns a mass of 1/2 to each singleton set. For any index set
I, denote by u the product measure on {—1,1}!. If I is countable, {—1,1}! is
measure isomorphic to [0,1]. For the remainder of this section, fix an index set
I which has the cardinality of the continuum. For each i € I, let ; : {-1,1}f —
{—1,1} be the projection onto the i-th coordinate. If J is a finite subset of I, and
8 = (6:)ics € {—1,1}’, define ¢ to be the function [T;c; x(e,=5,} on {-1,1}.
Let @ be the span of the functions {¢s5 : 6 € {—1,1}”}. It is not hard to see
that the set & = |J{®, : J C I,|J| < oo} is a vector lattice (with the usual
pointwise operations and order). Define E by

E={f=(fi)iecr: fic® foralli, f;#0 foratmost finitely many i}.

Similarly, let E; consist of all f = (f;)icr € E such that f; € ®; for all <.
Then FE is a vector lattice with the coordinatewise operatiéns and order, and
E=\J{E;:JCI]J| <o} Anorm || on E is called a lattice norm if
If| < |g| implies ||f|| < |lg||- For f = (f;) € E, let the distribution function ds
of f be defined by de(t) = 3, uflfil > t}, t > 0.

THEOREM 8: Let ||-|| be a lattice norm on E which is rearrangement invariant in
the sense that f, g € E, dg = dg implies ||f|| = ||g||. Then (E, ||-||) is isometrically
lattice isomorphic to a sublattice of W.

Of course, it follows that the completion of E, E, is isometrically isomorphic to
a sublattice of W. Since W is isometrically lattice isomorphic to a sublattice of
W by Theorem 5, the same is true for E. This leads immediately to the following
corollary.

COROLLARY 9: If 1 < p < oo, then ¢P(I,LP({-1,1}!)) is isometrically
isomorphic to a sublattice of W.

As indicated above, L' may be identified (as a Banach lattice) with
L'({-1,1}%). This identification will be in force for the rest of the section. For
each k € Z, let r: {—1,1}%2 — {—1,1} be the projection onto the k-th coordinate.
Select a bijection v: I — {~1,1}N. Thus, for every i € I, (i) = (v(3,k)),,
where v(i,k) = £1 for all « € I, k € N. Finally, for every 4, pick a strictly
decreasing sequence of negative integers k; = (k;(m))59_; such that

e for each m, {ki(m) : i € I'} has only finitely many distinct values;
e if i £ ¢, then {m : k;(m) = ky:(m)} is finite.
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Given a finite subset J of I, § € {—1,1}”, i € I, and m € N, define, on {-1,1}2,

m
w},ﬁ,i,m = 2m H X{T;‘=’7(i,k)} : H X{r&j(m)zéj}'
k=1 _‘IEJ

The mapping Ty m: E; — L! is defined by

Timf=Y S a(i,80)Ys5im

i€l se{-1,1}7

for all f = (f;)ier € Ej, where f; = 266{_1,1}, a(1,8)¢ys. Let us remark that
the sum over 7 is in fact a finite sum, since f; = 0 for all but finitely many .
It is clear that Ty, is linear. If Iy and J are finite subsets of I, there exists
mo = mo(lo,J) € N such that
o (v(3,1),...,v(E,mo)) # (¥(#,1),...,v(7,mo)) if 4,7’ € I, t # 7',
o kj(m) # kj(m) whenever j,5' € J, j # j', and m > my.
The following lemma is easily verified by direct computation.

LeEMMA 10: Let Iy, J,, and J, be finite subsets of I such that J; C Js, and let
m Z mo(I(),Jz). If

> e 8)pns= D>, bmds foralicl,

se{-1,1}"1 ne{-1,1}’2

or
Z Z a(l, 6)1/).’1 ,6,i,m = Z Z b(i’ n)w-’?:nvivm’
i€lp se{-1,1}1 i€lp ne{—-1,1}72

then for all n € {~1,1}”2, and all i € Iy, b(i,n) = a(i,d), where § = 1y, .
An obvious consequence of the lemma is the following proposition.

PROPOSITION 11: Let Iy, Ji, and Jy be finite subsets of I such that J, C J,,
and let m > mo(ly, J2). If £ = (fi)ic1 € Ej,, and f; = 0 for all i ¢ Iy, then
Ty, mf =Ty, mf.

For each f € E, choose a finite subset J(f) of I such that f € Ej). Given
a double sequence (hmn) of non-negative measurable functions on {1, 1}% such
that sup,.,, [|Ts¢ty.mf - hmnller < oo for all f € E, consider the (non-linear)
mapping 7 : E — °(#<(LY)) defined by Tf = (Ts(£},mf - Amn)mn-

PROPOSITION 12: Let Q: £°(f®(L')) — £=°(£*°(L'))/co(£>(L')) be the
quotient map. Then QT is a linear lattice homomorphism.
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Proof: Let f = (fi)ic1, 8 = (gi)ier € E, and let a € R. Choose a finite subset
Ip of I such that f; = 0 =g; if i ¢ Iy. Define J = J(f)uJ(g) U J(of +g). If
m > mo(lg, J), then, for all n € N,

Tyat+g)m(of +8) - hbmn=Tym(cf +8) - hinn by Proposition 11
=0Timf M + TimE - hnn by linearity of T,
=aTy)mf - hmn+T1(g)m8 - hmn by Proposition 11.

Hence QT is linear. Now let J' = J(f) U J(|f]). Note that the functions
Y5 mim i € Ip,n € {1, I}J'} are pairwise disjoint if m > mq(Ig, J'). Thus
Ty ml|f| = Ty mf| for all m > mo(ly,J'). For all such m, and all n € N, it
follows from Proposition 11 that

IT5(8),mE Bmal =1 Ts(6) mf |- Bmn = T3 mf | hnn = Tr nl€|-hmn = Trepy,m €l hmn-

Therefore, |QTf| = QT|f|, as required. |

Given m € N, the set K,, = {ki(m) : i € I} is a finite subset of negative
integers. Let K/, = {1,2,...,m}UKn. Ifn = (m) € {~1,1}%m, let ¢ym
be the function [],¢ K, X{re=ny} defined on {-1,1}2. Associate with each real
sequence ¢ = (Cﬂ)ne{—1,1}"$n a function h; = Ene 1,1}l EnGn.m- Also, for each
m, choose subsets I, and J, of I such that |I,;,| = 2™, and |Jpm| = |Kn|. There
exists a bijection mpn: Iy X {~1,1}9m = {~1,1}¥m. Given ¢ = (c,,)ne{_l_l}xg,,,
define h; = (h; c)ier by hic = ZTG{_M}J". Crm(iyr) P, fOT 1 € I, and hy o =0
otherwise.

LEMMA 13: Let f = (f;)icr € E, and let Iy be a finite subset of I such that
fi=0ifi ¢ ly. If m > mo(ly, J(f)), and ¢ = (c,,)ne{_1 11K then there exists
h = (hs)icr, such that di, = dn,, and || Ty mf - hellpr = Siep [ 1 fihil-

Proof: Write f; = 266{,1,1}1(” a(t,6)¢r),s for all i € Io. There exist pairwise
disjoint subsets {C; s : i € Iy, € {~1,1}/®} of {—1,1}%m, each of cardinality
2|Km|—|J(f)l, such that ¢J(f),6,i,m =2m ZnEC.- 5 C.,’,m. Then

I T5(ey,mf - hellr = z Z Z |a2z|};5 Ic,,l|

i€lo §e{—1,1}7(0 n€C;i s

Since m > mg(Io, J(f)), |Io| < 2™, and |J(f)| < |K|. Choose subsets I; and J},
of I such that Iy NI, =@, |[[oU | =2™, J(f) C J),, and |J},| = | K| = [Tl
For i € Iy, 6 € {—1,1}7® there exists a bijection vig:Cis > {T€{-1, 1}1;"
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Tisf) = 0}. Define h; = Eae{—l,l}m) Zr,ec,'é s, wis(m) for @ € Ip. Finally,
there is a bijection

B x {=1,1}m 5 {1, 1}5m\ U {Cis:i€ I, 6 € {-1,1}7O},

Define hi = 32 ¢y 1ysm C8r@as,,r for i € I Then let by = 0if i ¢ Io U .
It is straightforward to check that h = (h;)ic; fulfills the requirements of the
lemma. |

For all m € N, let B,, be the collection of all non-negative rational sequences
¢ = (Cn)ye(_1,1y#w Such that Yicr [ fihicl < |If]| for all f = (fi)ier € E. Let us
note that if ¢ € Bp, and h = (h;)ier, dj, = dhn,, then, due to the rearrangement
invariance of the norm on E, 3~ [ |fih;| < |f]| for all f € E.

PROPOSITION 14: Let f = (fi)ic; € E, and let Iy be a finite subset of I such
that f; = 0 for all « ¢ Iy. For all m > my(ly, J(f)),

sup (| Tye),mf - hellor = [I£]]-
ceB,

Proof: By Lemma 13, for any ¢ € By, there exists h = (l.Li),E] such that
di, = dn,, and [|Tye)mf - hellr = ¥i¢; [ 1fihil. The last sum is < [|f]| by the
remark preceding the proposition. Conversely, for any € > 0, there exists 2’ € F,
lz']| < 1 such that |z’(f)] > (1 — ¢€)||f]|. For ip € Iy, and & € {—1,1}7®) let
Xig,6 = (.’L‘,‘) (S E, where T, = ¢J(f),5 ife = io, and T, = 0 otherwise. Set b(l,(S) =
2"](”':!?'()(,"5) for i € Io, é S {—1, I}J(f). Write fi = Z&E{—l,l}”” a(i,6)¢‘](f)'5
for i € Iy. Then

a-alfi<wmisy, Y LRIl

i€lo se{—1,1}7(0

Hence, there exist non-negative rational numbers ¢(, §) such that (¢, §) <[b(3, )],

SEBHED Y m@ﬁ#

1€lp §e{-1,1}/(DO

and

Define g = (gi)ier by 9: = Z&e{_l‘l}l(f) e, (5)¢_](f),5 for i € Iy, g; = 0 otherwise.
If p= (pi)iEI 1S E, deﬁne PJ(f)p = (qi)iéls

¢ = Z (0l /pzd)J(f),& 'd’J(f),&'

se{—-1,1}7("
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By a standard argument, using the rearrangement invariance of the norm on E,
we see that || Py¢e)pl| < ||pl|. Hence

() ¥ / ipigil < 1)y lol) < [lpll

16[0
From the proof of Lemma 13, there are pairwise disjoint subsets
{Cis 4 € Ip,d € {~1,1}7®} of {~1,1}¥m, each of cardinality 2/KI-1/(I
such that if we let ¢, = c(1,8) for all n € C 5, i € Iy, 6 € {—1, 1}J(f), and ¢, =0

otherwise, then for ¢ = (C’l)ne{—l 1}Kim s

Tyt bl =Y Y EELD oy

i€lo §€{~1,1}7(0)

Note that dn, = dg. It follows from (7) that 3 .., [Ipihic| < [lp|| for all
P = (pi)ier € E. Thus ¢ € B,,. Since € > 0 is arbitrary, we obtain the reverse
inequality

sup ||Tse),mf - hellzr > |If]].

c€B,,

This completes the proof the proposition. |

We are now ready to prove Theorem 8. For each m € N, B,, is countable.
Hence we can list the functions {h. : ¢ € Bn,} as a sequence (hmn)S%,. Define
the map T: E — £°(£>°(LY)) by Tf = (Ts(¢),mf* hmn)mn. By Proposition 12, QT
is a lattice homomorphism, where Q: £2°(£%°(L1)) — £°(£%°(L))/co(¢>(LY)) is
the quotient map. It follows from Proposition 14 that QT is an (into) isometry.
Finally, note that in the notation of Lemma 13 and Proposition 14,

Ty(gymf - he € span{(ym 1 € {-1, 1}K:"}
for all ¢ € B,,, m > mo(Ip, J(f)). Hence
ITs(8)mf - hellLeo < 25| Ty mf - Bcl| 1.
Thus QTf € QFy, where M = (M), Mpn = 2/Xml for all m and n. An

appeal to Theorem 3 yields the desired result.

3. Order isometry

Following [5], we say that a linear operator T from a Banach lattice E into a
Banach lattice F is an order isometry if Tz > 0 if and only if z > 0, and
|ITz|| = ||lz|| for all z € E. In [5], it is shown that if E is a separable Banach
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lattice, and E’ has a weak order unit, then E’ is order isometric to a closed
subspace of W. Here, we show that the assumption that E’' has a weak order
unit can be removed.

Let T = {-1,1}". f m €N, and ¢ € ®,, = {-1,1}™, let
Te={vel:mu,. .m = ¢}

PROPOSITION 15: There is an order isometry from £°(£}(T)) onto a closed
subspace of (D £1(®)) e /(P £} (1

Proof: Partition N into a sequence of infinite subsets (L,)32,. If a € £°(£}(T)),

write ¢ = (af), so that |la|| = sup,)_,crley| < co. Given m € N, and
¢ € &, define by = Z—yel‘ az, where n is the unique integer such that m €
L,. Define the map U: {2(£YT)) = (P (®m))ex by Ta = b, where b =

((bg)ped,> (bs)gca,,...). Clearly T is a positive hnear operator. Note that if

m € Ly, then

Yo lbsl< D0 D lazl= ) layl < lall

¢€Qm d’eq)m 76F¢ 7EF
Hence ||T|| < 1. Let Q: (@£ ®m))ee — (D LH(Bm))eee /(D €1(Pm))c, be the
quotient map. Then QT is positive, and ||QT|| < 1. We claim that QT is an
order isometry.

If QTa = Qb > 0, then limy, 400 Y {bgp : # € Pm,bs <0} =0. If a # 0, then

there exist ng and o such that al¢ < 0. List the elements of L, in ascending
order: Lp, = {m; <mg <---}. ForallT € N, let ¢, = yo((1,...,m,}- Then

lim by, = lim Z al =al? <0.

00 r— 00
YET,,
Thus
lim Y by <al <0
r—o00 ¢ 7o ’
$ESm,
by <O

a contradiction. Therefore, a > 0.
Now, assume ||a|| > 1. Then there exists n such that }°  rla}| > 1. Given
€ > 0, choose a finite subset I'; of [ such that

S lenl>1 and ) laj|<e.

vel v¢Ty
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Choose m € L, so that if we define ¢y = v){1,... m) for all ¥ € T, then ¢, # ¢
for all 4,4 € Ty, vy # %'. For 4 € Iy,

bosl =1 ajl > laZl— D lajl-

€r,. Y€l
T 05 7ETys

Therefore,

Y fbel 2 Yo lall - 3 lall > 1

y€T, ver RIS
Since € > 0 is arbitrary, |QTa| > |lal|. Since ||QT|| < 1 as well, we conclude
that QT is an isometry. ]

LEMMA 16: Let E be a separable Banach lattice. Then E' is isometrically lattice
isomorphic to a sublattice of £°(£}(T, L')).

Proof: By the proof of Lemma 3 in [5], for any z € E, x > 0, there exist a
compact Hausdorff space K, and a lattice homomorphism S: C(K) — E such
that S’ is a lattice homomorphism, [0, S'z’] is weakly (and hence norm) separable,
and ||S'z'|| = |¢'|(z) for all ' € E’. Note that E’, and hence S'E’, has a
dense subset of cardinality < |[|. Since S'E’ is a sublattice of the AL-space
M (K), has separable order intervals, and has density < |T'|, it follows that S'E’
is isometrically lattice isomorphic to a sublattice of £(T', L!). Now let (z,) be
a positive sequence in the unit ball of E such that ||z'|| = sup, |z'|(z,) for all
z' € E'. For each n, there exists a lattice homomorphism R,,: E' — £}(T', L) such
that ||Raz’|| = |z'|(z,) for all ' € E’. Clearly, the map R: E' — £*(£*(T; L))
defined by Rz’ = (R,2')S2, is an isometric lattice isomorphism. ]

THEOREM 17: Let E be a separable Banach lattice. Then E' is order isometric
to a closed subspace of W.

Proof: For any n € N, let E,, be the conditional expectation operator on L! with
respect to the o-algebra generated by the sets {[(k — 1)/2",k/2"):1 < k < 2"}.
Then the map V: £(T, L) — (@S2, £4(T, E,L')),,. defined by V((f1)rer) =
((Enfy)yer)?; is an order isometry. Since £(T', E,L") is clearly isometrically
lattice isomorphic to £}(T'), it follows that £2°(£*(T, L')), and hence E’, is order
isometric to a closed subspace of £2°(£}(T)), which in turn is order isometric
to a closed subspace of (€ £1(®m)) s /(B €1 (®m))c, by Proposition 15. It is a
simple exercise to check that the latter space is isometrically lattice isomorphic
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to a sublattice of QFy for a suitably chosen M = (M;;). Finally, QF is
isometrically lattice isomorphic to a sublattice of W by Theorem 3. |
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