THE NORMED AND BANACH ENVELOPES OF WEAKL¹

BY

DENNY H. LEUNG

Department of Mathematics, National University of Singapore Singapore 117543 e-mail: matlhh@nus.edu.sg

ABSTRACT

The space Weak L^1 consists of all Lebesgue measurable functions on [0, 1] such that

$$
q(f) = \sup_{c>0} c \lambda \{t : |f(t)| > c\}
$$

is finite, where λ denotes Lebesgue measure. Let ρ be the gauge functional of the convex hull of the unit ball $\{f : q(f) \leq 1\}$ of the quasi-norm q, and let N be the null space of ρ . The normed envelope of Weak L^1 , which we denote by W, is the space $(WeakL^1/N, \rho)$. The Banach envelope of Weak L^1 , \overline{W} , is the completion of W. We show that \overline{W} is isometrically lattice isomorphic to a sublattice of W . It is also shown that all rearrangement invariant Banach function spaces are isometrically lattice isomorphic to a sublattice of W.

Introduction

Let (Ω, Σ, μ) be a measure space. The space Weak $L^1(\mu)$ consists of all (equivalence classes of almost everywhere equal) real-valued Σ -measurable functions f for which the quasinorm

$$
q(f) = \sup_{c>0} c \mu\{\omega : |f(\omega)| > c\}
$$

is finite. This space arose in connection with certain interpolation results, and is of importance in harmonic analysis. If (Ω, Σ, μ) is purely non-atomic, the maximal seminorm ρ on Weak $L^1(\mu)$ was found in [1] and [2] to be

$$
\rho(f) = \lim_{n \to \infty} \sup_{\substack{q/p > n \\ p,q>0}} \int_{p \leq |f| \leq q} |f| \, d\mu / \ln(q/p).
$$

Received November 25, 1998

The normed envelope of $WeakL^1(\mu)$ is the normed space

$$
W(\mu) = (\text{Weak}L^1(\mu)/N, \rho),
$$

where N denotes the null space of the functional ρ . The Banach envelope is the completion $\overline{W(\mu)}$ of $W(\mu)$. In this paper, we consider (up to measure isomorphism) only the measure space [0, 1] endowed with Lebesgue measure λ . We denote $W(\lambda)$ and $\overline{W(\lambda)}$ by W and \overline{W} respectively. Peck and Talagrand [6] showed that \overline{W} is universal for the class of all separable Banach lattices with order continuous norm. Recently, Lotz and Peck [5] showed that \overline{W} contains isometrically lattice isomorphic copies of certain sublattices of $\ell^{\infty}(L^{1})$. (Here and throughout, L^1 means $L^1[0, 1]$, up to isometric lattice isomorphism.) From this, they deduced that every separable Banach lattice is isometrically lattice isomorphic to a sublattice of \overline{W} . In this article, we show that there is a sublattice G of $\ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1))$ such that G, W, and W mutually isometrically lattice isomorphically embed in one another. It is also shown that all rearrangement invariant Banach function spaces in the sense of [5] are isometrically lattice isomorphic to sublattices of W. For further results regarding the structure of Weak $L^1(\mu)$, we refer the reader to [3]. Unexplained notation and terminology on vector lattices can be found in [7]. If E is a Banach lattice and I is an arbitrary index set, let $\ell^p(I, E), 1 \leq p \leq \infty$, respectively, $c_0(I, E)$, be the space consisting of all families $(x_i)_{i \in I}$ such that $x_i \in E$ for all i, and $(\|x_i\|)_{i \in I} \in \ell^p(I)$, respectively, $c_0(I)$. We write $\ell^p(E)$ and $c_0(E)$ for these respective spaces if the index set $I = N$. Clearly $\ell^p(I, E)$ and $c_0(I, E)$ are Banach lattices. The cardinality of a set A is denoted by $|A|$.

1. The spaces W and \overline{W}

If f is a real-valued function defined on a set Ω , let the support of f be the set supp $f = \{\omega \in \Omega : |f(\omega)| > 0\}$. Furthermore, for real numbers $p \leq q$, we write ${p \le f \le q}$ for the set ${\omega \in \Omega : p \le f(\omega) \le q}.$

LEMMA 1: *Let (hk) be a sequence of disjointly supported Lebesgue measurable functions on* [0, 1]². Suppose there exist δ , $\gamma > 0$ and *strictly positive sequences* (α_k) , (β_k) such that

- *1.* $\alpha_k < \beta_k < \alpha_{k+1}$ for all k,
- 2. $\lim_{k} \alpha_k = \lim_{k} \beta_k = \infty$,
- 3. $ln(\alpha_{k+1}/\beta_k) \ge (k+1) \sum_{j=1}^k \int h_j$ for all k, and
- 4. $\delta \alpha_k \leq h_k(s,t) \leq \gamma \beta_k$ for all $(s,t) \in \text{supp } h_k$.

If $1 \leq p < q < \infty$, $q/p > \delta \alpha_N$, and *h* denotes the pointwise sum $\sum h_k$, then

$$
\int_{p\leq h\leq q}h\leq \frac{1}{N}\ln \frac{\gamma q}{\delta p}+\sup_{k}\int_{p\leq h_k\leq q}h_k.
$$

Proof: If $[\delta \alpha_k, \gamma \beta_k] \cap [p, q] = \emptyset$, $\int_{p \le h_k \le q} h_k = 0$. So we may assume that the said intersection is non-empty for some k. Since $\delta \alpha_k \to \infty$, $[\delta \alpha_k, \gamma \beta_k] \cap [p, q] \neq \emptyset$ for at most finitely many k . Let m and n be the minimum and maximum of the set $\{k : [\delta \alpha_k, \gamma \beta_k] \cap [p, q] \neq \emptyset\}$ respectively. We consider two cases.

CASE 1: $m = n$. In this case,

$$
\int_{p\leq h\leq q}h=\int_{p\leq h_m\leq q}h_m\leq \sup_{k}\int_{p\leq h_k\leq q}h_k.
$$

CASE 2: $m < n$.

Note that $p \leq \gamma \beta_m$, and $q \geq \delta \alpha_n$. Therefore,

$$
\ln \frac{\gamma q}{\delta p} \ge \ln \frac{\alpha_n}{\beta_{n-1}} \ge n \sum_{k=1}^{n-1} \int h_k.
$$

Now $q > \delta p \alpha_N \geq \delta \alpha_N$; hence $n \geq N$. Thus

$$
\int_{p \le h \le q} h = \sum_{k=m}^{n-1} \int_{p \le h_k \le q} h_k + \int_{p \le h_n \le q} h_n
$$

$$
\le \sum_{k=1}^{n-1} \int h_k + \int_{p \le h_n \le q} h_n
$$

$$
\le \frac{1}{n} \ln \frac{\gamma q}{\delta p} + \sup_k \int_{p \le h_k \le q} h_k
$$

$$
\le \frac{1}{N} \ln \frac{\gamma q}{\delta p} + \sup_k \int_{p \le h_k \le q} h_k.
$$

Write any element $g \in \ell^{\infty}(\ell^{\infty}(L^1))$ as $g = (g_{ij})$, where $g_{ij} \in L^1$ for all *i*, *j*, and $\sup_{i,j} \|g_{ij}\|_{L^1} < \infty$. For any double sequence of numbers $M = (M_{ij})$ such that $M_{ij} \geq 1$ for all *i*, *j*, let $F = F_M$ be the (non-closed) lattice ideal of $\ell^{\infty}(\ell^{\infty}(L^1))$ consisting of all $g = (g_{ij}) \in \ell^{\infty}(\ell^{\infty}(L^1))$ such that $\sup_{i,j} ||g_{ij}||_{L^{\infty}}/M_{ij} < \infty$. For the next result, we follow the idea of Lotz and Peck [5] in considering the Weak L^1 space defined on the unit square $[0, 1]^2$ endowed with Lebesgue measure. Since [0, 1] and [0, 1]² are isomorphic measure spaces, their corresponding Weak L^1 spaces are isometrically lattice isomorphic; the same holds for the respective normed and Banach envelopes.

PROPOSITION 2: There exists a lattice homomorphism $T : F \to W$ of norm ≤ 1 which vanishes on $F \cap c_0(\ell^{\infty}(L^1))$.

Proof: Choose positive sequences (ϵ_n) and (r_i) with limits 0 and ∞ respectively so that $r_i > 1 \geq \varepsilon_n$ for all i and n. For each n, let E_n be the conditional expectation operator on L^1 with respect to the σ -algebra generated by $\{[\frac{m-1}{2^n}, \frac{m}{2^n}]: 1 \leq m \leq 2^n\}$. If $i, j, n \in \mathbb{N}$, let A_{ijn} be a countable set which is dense in

$$
\{f\in E_nL^1:||f||_{L^1}=1,\quad \varepsilon_n\leq f\leq nM_{ij}\}
$$

with respect to the L^{∞} -norm. For each $f \in A_{ijn}$, let $(a_m(f))_{m=1}^{2^n}$ be the coefficients such that

$$
f=\sum_{m=1}^{2^n}a_m(f)\chi_{[(m-1)/2^n,m/2^n)}.
$$

Note that $\varepsilon_n \le a_m(f) \le 2^n$ for $1 \le m \le 2^n$. Arrange $\bigcup A_{ijn}$ into a sequence (f_k) . For each k, determine $i(k)$, $j(k)$, $n(k)$ such that $f_k \in A_{i(k),j(k),n(k)}$. Choose a positive sequence (b_k) so that if we define $\alpha_k = b_k/2^{n(k)}$, and $\beta_k =$ $M_{i(k),j(k)}r_{i(k)}b_k/\varepsilon_{n(k)}$, then $\alpha_k < \beta_k < \alpha_{k+1}$, $\lim_k \alpha_k = \infty = \lim_k \beta_k$, and

$$
\ln \frac{\alpha_{k+1}}{\beta_k} \ge (k+1) \sum_{l=1}^k \ln r_{i(l)}.
$$

Let $g = (g_{ij}) \in F$, and $k \in \mathbb{N}$. Define a function h_k on $[0, 1]^2$ by

$$
h_k(s,t) = \sum_{m=1}^{2^{n(k)}} \frac{g_{i(k),j(k)}(t)}{s} \chi_{B_{km}},
$$

where

$$
B_{km} = \left\{ (s,t) : \frac{a_m(f_k)}{r_{i(k)}b_k} < s < \frac{a_m(f_k)}{b_k}, \frac{m-1}{2^{n(k)}} < t < \frac{m}{2^{n(k)}} \right\}.
$$

The map S defined by $Sg = \sum h_k$, where the sum is taken pointwise, is a linear map from F into the space of Lebesgue measurable functions on $[0, 1]^2$. Notice that

$$
\text{supp } h_k \subseteq \bigcup_{m=1}^{2^{n(k)}} \left\{ (s,t) : \frac{a_m(f_k)}{r_{i(k)}b_k} < s < \frac{a_m(f_k)}{b_k} \right\}
$$
\n
$$
\subseteq \left\{ (s,t) : \frac{\varepsilon_{n(k)}}{r_{i(k)}b_k} < s < \frac{2^{n(k)}}{b_k} \right\}
$$
\n
$$
\subseteq \left\{ (s,t) : \frac{1}{\beta_k} < s < \frac{1}{\alpha_k} \right\}.
$$

Hence the h_k 's are pairwise disjoint. As the sets B_{km} , $1 \leq m \leq 2^{n(k)}$, are also pairwise disjoint for each k , it follows readily that S is a lattice homomorphism. Suppose $g \in F$, $||g|| = \sup_{i,j} ||g_{ij}||_{L^1} \leq 1$, let us estimate the ρ -norm of the function *Sg*. In the first instance, let us assume additionally that there exists $\delta > 0$ such that $g_{ij}(t) \geq \delta$ for all *i, j,* and t. Set $\gamma = \sup_{i,j} ||g_{ij}||_{L^{\infty}}/M_{ij}$. If $(s, t) \in \text{supp } h_k$, then

$$
\frac{\delta}{s} \leq \frac{g_{i(k),j(k)}(t)}{s} = h_k(s,t) \leq \frac{\gamma M_{i(k),j(k)}}{s},
$$

and

$$
\frac{M_{i(k),j(k)}}{\beta_k} = \frac{\varepsilon_{n(k)}}{r_{i(k)}b_k} < s < \frac{2^{n(k)}}{b_k} = \frac{1}{\alpha_k}.
$$

Hence

$$
\delta \alpha_k \leq h_k(s,t) \leq \gamma \beta_k.
$$

Moreover,

$$
\int h_k = \sum_{m=1}^{2^{n(k)}} \int_{\frac{m-1}{2^{n(k)}}}^{\frac{m}{2^{n(k)}}} \int_{\frac{a_m(f_k)}{r_i(k)} \delta}^{\frac{a_m(f_k)}{b_k}} \frac{g_{i(k),j(k)}(t)}{s} ds dt
$$
\n
$$
= \sum_{m=1}^{2^{n(k)}} \int_{\frac{m-1}{2^{n(k)}}}^{\frac{m}{2^{n(k)}}} g_{i(k),j(k)}(t) dt \ln r_{i(k)}
$$
\n
$$
= ||g_{i(k),j(k)}||_{L^1} \ln r_{i(k)} \leq \ln r_{i(k)}.
$$

Therefore,

$$
\ln \frac{\alpha_{k+1}}{\beta_k} \ge (k+1) \sum_{l=1}^k \ln r_{i(l)} \ge (k+1) \sum_{l=1}^k \int h_l.
$$

By Lemma 1, if $q/p > \delta \alpha_N$, and $p \ge 1$, then

$$
\int_{p \le S} g \le \frac{1}{N} \ln \frac{\gamma q}{\delta p} + \sup_{k} \int_{p \le h_k \le q} h_k.
$$

If $q/p > \delta \alpha_N$ and $0 < p < 1$, then, using Lemma 1 again,

$$
\int_{p\le S} g \le \int_{p\le S} g \le \int_{p\le S} g \int_{1\le S} g \le q/p \le 1 + \frac{1}{N} \ln \frac{\gamma q}{\delta p} + \sup_k \int_{1\le h_k \le q/p} h_k.
$$

Hence

$$
(2) \qquad \lim_{n \to \infty} \sup_{\substack{q/p > n \\ p,q>0}} \int_{p \le Sg} \frac{Sg}{\log q} \cdot \ln(q/p) \le \lim_{n \to \infty} \sup_{\substack{q/p > n \\ p,q>0}} \sup_{k} \int_{p \le h_k \le q} h_k / \ln(q/p).
$$

Now

$$
\int_{p \le h_k \le q} h_k \le \int_0^1 \int_{g_{i(k),j(k)}(t)/q}^{g_{i(k),j(k)}(t)/p} \frac{g_{i(k),j(k)}(t)}{s} \, ds \, dt
$$
\n
$$
= \|g_{i(k),j(k)}\|_{L^1} \ln \frac{q}{p} \le \ln \frac{q}{p}.
$$

Therefore, equation (2) implies that $\rho(Sg) \leq 1$. For a general $g = (g_{ij}) \in F$, and any $\delta > 0$, let $g' = (g'_{ij})$, where $g'_{ij} = |g_{ij}| + \delta$. By the above calculation, $p(Sg') \le ||g'|| = ||g|| + \delta$. Since S is a lattice homomorphism, $|Sg'| \ge |Sg|$. Thus $\rho(Sg) \leq \rho(Sg') \leq ||g|| + \delta$. As $\delta > 0$ is arbitrary, we conclude that $\rho(Sg) \leq ||g||$. In particular, applying Lemma 1 in [5], we see that S maps into Weak L^1 . It is now clear that the map $T : F \to W$ defined by $Tg = Sg + N$ is a lattice homomorphism of norm ≤ 1 .

It remains to show that T vanishes on $F \cap c_0(\ell^{\infty}(L^1))$. By the continuity of T, it suffices to show that $Tg = 0$ for all $g = (g_{ij}) \in F$ such that there exists $i_0 \in \mathbb{N}$ with $g_{ij} = 0$ whenever $i \neq i_0$. As above, we may assume additionally that there exists $\delta > 0$ such that $g_{i_0j}(t) > \delta$ for all j and t. If $h_k \neq 0$, then $g_{i(k),j(k)} \neq 0$; hence $i(k) = i_0$. Using (1),

$$
\int_{p\leq h_k\leq q} h_k \leq \int h_k \leq ||g|| \ln r_{i(k)} = ||g|| \ln r_{i_0}.
$$

By (2),

$$
\rho(Sg) \leq \lim_{n \to \infty} \sup_{\substack{q/p > n \\ p,q>0}} \frac{\|g\| \ln r_{i_0}}{\ln(q/p)} = 0.
$$

Let $Q: \ell^{\infty}(\ell^{\infty}(L^1)) \to \ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1))$ be the quotient map. Since Q is a lattice homomorphism, $G = QF$ is a sublattice of $\ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1)).$

THEOREM 3: *There exists an isometric lattice isomorphism from QF into W.*

Proof: Let T be the map defined in the proof of Proposition 2. Since T vanishes on $F \cap c_0(\ell^{\infty}(L^1))$, there exists $R: QF \to W$ such that $T = RQ_{\{F\}}$. Now R is a lattice homomorphism, since both T and Q are, and $||R|| \leq ||T|| \leq 1$. We claim that $\rho(RQg) \ge ||Qg||$ for all $g \in F$. Suppose $g = (g_{ij}) \in F$, and $||Qg|| = 1$. We may assume that there exist sequences of natural numbers $(i'(l))$, $(j'(l))$ such that $(i'(l))$ increases to ∞ , and $||g_{i'(l),j'(l)}||_{L^1} = 1$ for all *l*. Recall the sequence (f_k) chosen in the proof of Proposition 2. Given $\eta > 0$, there exists a sequence *(k(l))* in N such that $f_{k(l)} \in \bigcup_n A_{i'(l),j'(l),n}$,

$$
\sup_{l} |||g_{i'(l),j'(l)}| - f_{k(l)}||_{L^1} \leq \eta \quad \text{and} \quad \sup_{l} \frac{||f_{k(l)}||_{L^{\infty}}}{M_{i'(l),j'(l)}} < \infty.
$$

Let $\phi_{ij} = f_{k(l)}$, and $\psi_{ij} = g_{i'(l),j'(l)}$ if $(i,j) = (i'(l),j'(l)), l \in \mathbb{N}$, and $\phi_{ij} = \psi_{ij} =$ 0 otherwise. Then $\phi = (\phi_{ij})$ and $\psi = (\psi_{ij})$ are both in F, and $\|\phi - \psi\| \leq \eta$. Since $||T|| \leq 1$,

$$
\rho(T\psi)=\rho(T|\psi|)\geq \rho(T\phi)-\eta.
$$

Then

$$
|g| \ge \psi \Longrightarrow |Tg| \ge T\psi \Longrightarrow \rho(Tg) \ge \rho(T\psi) \ge \rho(T\phi) - \eta.
$$

For a given *l*, write $f_{k(l)} = \sum_{m=1}^{2^n} a_m \chi_{[(m-1)/2^n, m/2^n)}$ for some $(a_m)_{m=1}^{2^n}$, and some *n*. Note that $i(k(l)) = i'(l)$, $j(k(l)) = j'(l)$, and $n(k(l)) = n$. By definition of T, for $1 \leq m \leq 2^n$, $(s, t) \in B_{k(l),m}$, $|T\phi(s, t)| = a_m/s$. In particular, $b_{k(l)} <$ $|T\phi(s,t)| < r_{i'(l)}b_{k(l)}$ for $(s,t) \in \bigcup_{m=1}^{2^n} B_{k(l),m}$. Therefore,

$$
\int_{b_{k(l)} \leq |T\phi| \leq r_{i'(l)} b_{k(l)}} |T\phi| \geq \sum_{m=1}^{2^n} \iint_{B_{k(l),m}} \frac{a_m}{s} ds dt
$$

=
$$
\sum_{m=1}^{2^n} \frac{a_m}{2^n} \ln r_{i'(l)} = ||f_{k(l)}||_{L^1} \ln r_{i'(l)}.
$$

Since $\lim_{l} r_{i'(l)} = \infty$, we see that $\rho(T\phi) \geq \limsup_{l} ||f_{k(l)}||_{L^1} \geq 1 - \eta$. As $\eta > 0$ is arbitrary, it follows immediately that $\rho(RQg) = \rho(Tg) \geq 1$.

Observe that if $M = (M_{ij})$ and $M' = (M'_{ij})$ satisfy $\sup_i M_{ij} = \sup_j M'_{ij} = \infty$ for all i, then each of QF_M and $QF_{M'}$ is isometrically lattice isomorphic to a sublattice of the other. For the remainder of this section, let

$$
M_{ij} = (i+1)j/\ln(i+1) \quad \text{for all } i, j \in \mathbb{N}.
$$

The next result and Theorem 3 together show that $QF = QF_M$ is a maximal sublattice of W.

THEOREM 4: *There is an isometric lattice isomorphism from W into QF.*

Proof: Given $f \in \text{Weak}L^1$, let $g_{ij} = f \chi_{\{j \leq |f| \leq (i+1)j\}} / \ln(i+1)$ for all $i, j \in \mathbb{N}$. It is easy to see that $g = (g_{ij}) \in F$, and that

(3)
$$
||Qg|| = \limsup_{i \to \infty} \sup_j ||g_{ij}||_{L^1} = \rho(f).
$$

Consider the mapping L: Weak $L^1 \rightarrow QF$ defined by $Lf = Qg$. It follows from the proof of the Key Lemma 2.3 in [3] that L is linear. Now (3) tells us that the map $\tilde{L}: W \to QF$, $\tilde{L}(f+N) = Lf$, is well defined and a linear isometry. Also,

$$
L(|f+N|) = L|f| = Q|g| = |Qg| = |Lf| = |L(f+N)|.
$$

Hence \tilde{L} is the isometric lattice isomorphism sought.

THEOREM 5: There exists an isometric lattice isomorphism from \overline{W} into W.

Proof: It is easily verified that the set

$$
D = \{Qg : g = (g_{ij}) \in \ell^{\infty}(\ell^{\infty}(L^1)), \quad ||g_{ij}||_{L^{\infty}} \le M_{ij} \quad \text{for all } i, j\}
$$

is closed in $\ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1))$. Let $\tilde{L}: W \to QF$ be the isometric lattice isomorphism given in Theorem 4. By definition of \tilde{L} , $\tilde{L}(W) \subseteq D$. Now there is a unique continuous linear extension $L^{\#}$: $\overline{W} \to \ell^{\infty}(\ell^{\infty}(L^{1}))/c_{0}(\ell^{\infty}(L^{1}))$ of \tilde{L} . Since $\tilde{L}(W) \subseteq D$, and D is closed, $L^{\#}(\overline{W}) \subseteq D \subseteq QF$. Obviously, $L^{\#}$ is an isometric lattice isomorphism. Let $R: QF \to W$ be the isometric lattice isomorphism constructed in Theorem 3, then *RL #* is an isometric lattice isomorphism from \overline{W} into W . $\qquad \blacksquare$

2. Rearrangement invariant spaces

In this section, we show that if E is a rearrangement invariant space in the sense of [4, §2a], then E is isometrically lattice isomorphic to a sublattice of W. The result is inspired by Theorem 4 in [5], where it was shown that the Weak L^p spaces defined on separable measure spaces are isometrically lattice isomorphic to sublattices of \overline{W} . We provide the proof only for the rearrangement invariant spaces defined on $[0, \infty)$. The proofs for the measure spaces $[0, 1]$ and N can be obtained by making some obvious adjustments. Recall that if E is a rearrangement invariant space (or, more generally, a Köthe function space [4, Definition 1.b.17), every measurable function h such that hf is integrable for all $f \in E$ defines a bounded linear functional x'_{h} on E by $x'_{h}(f) = \int fh$. Such functionals are called integrals. Every simple function generates an integral on E.

LEMMA 6: Let E be a rearrangement invariant space on $[0, \infty)$. There exists *a sequence of simple functions* (h_i) *such that* $||x'_{h_i}|| \leq 1$ *for all n, and* $||f|| =$ $\limsup_{i\to\infty}$ *[fh_i]* for all $f \in E$.

Proof: Let F be the collection of all simple functions of the form

$$
h = \sum_{j=1}^{k} a_j \chi_{[c_{j-1}, c_j)},
$$

where $k \in \mathbb{N}$, $(a_j)_{j=1}^k$, $(c_j)_{j=0}^k$ are rational numbers, and $0 = c_0 < c_1 < \cdots < c_k$. Define \mathcal{F}_1 to be the subset $\{h \in \mathcal{F} : ||x_h'|| \leq 1\}$. We claim that for any $f \in E$, and any $\varepsilon > 0$, there exists $h \in \mathcal{F}_1$ such that $||\int fh|| > ||f|| - \varepsilon$. Let $f \in E$ and $\epsilon > 0$ be given. By definition of rearrangement invariant spaces, there exists an integral $x'_q \in E'$ such that $||x'_q|| \leq 1$, and $|x'_q(f)| = | \int fg | > ||f|| - \varepsilon/2$. Let (g_n) be a sequence of simple functions which converges to g pointwise, and such that $|g_n| \leq |g|$ for all n. By the Lebesgue Dominated Convergence Theorem, \lim_{n} *f* $fg_n =$ *f fg.* We may thus assume additionally that g is a simple function. It is easy to see that there exists $h \in \mathcal{F}$ such that $| \int fh | \ge | \int fg | - \varepsilon/2 > ||f|| - \varepsilon$, and that $h^* \leq g^*$, where h^* and g^* are the decreasing rearrangements of $|h|$ and $|g|$ respectively. Thus $||x_h'|| \le ||x_g'|| \le 1$. Therefore, $h \in \mathcal{F}_1$, as desired.

Since \mathcal{F}_1 is countable, we can arrange for a sequence (h_i) so that each element of F_1 appears infinitely many times in the sequence. Clearly the sequence (h_i) fulfills the conditions of the lemma.

THEOREM 7: *Every rearrangement invariant space E on* $[0, \infty)$ *is isometrically lattice isomorphic to a sublattice of W.*

Proof: We will show that E is isometrically lattice isomorphic to a sublattice of $\overline{QF_M}$ for some suitably chosen double sequence $M = (M_{ij})$. Then, by Theorem 3, E is isometrically lattice isomorphic to a sublattice of \overline{W} , which in turn is isometrically lattice isomorphic to a sublattice of W by Theorem 5.

Let (h_i) be the sequence given by Lemma 6. Since h_i is a simple function, there exists $0 < a_i < \infty$ such that supp $h_i \subseteq [0, a_i]$. For $f \in E$, $i \in \mathbb{N}$, and $t \in [0, 1]$, define $f_{i1}(t) = a_i f(a_i t) |h_i(a_i t)|$. Also let $f_{ij} = 0$ for all $i \in \mathbb{N}$ and all $j > 1$. Clearly

(4)
$$
||f_{i1}||_{L^{1}} = \int_{0}^{a_{i}} |f(u)h_{i}(u)| du = \int_{0}^{\infty} |f(u)h_{i}(u)| du.
$$

Thus $||f_{i1}||_{L^1} \leq ||f|| \cdot ||x'_{h_i}|| = ||f|| \cdot ||x'_{h_i}|| \leq ||f||$ for all i. Hence $(f_{ij}) \in$ $\ell^{\infty}(\ell^{\infty}(L^1))$. The map $T: E \to \ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1))$ defined by $Tf = Q(f_{ij})$ is easily seen to be a lattice homomorphism. It follows from the preceding calculation that $||T|| \leq 1$. On the other hand, by equation (4),

$$
\limsup_{i} \sup_{j} \|f_{ij}\|_{L^{1}} = \limsup_{i} \|f_{i1}\|_{L^{1}} = \limsup_{i} \int |f h_{i}| \ge \limsup_{i} |\int f h_{i}| \ge \|f\|.
$$

Therefore, T is an isometry. To complete the proof, it suffices to produce a sequence (M_i) such that $\lim_i ||f_{i1}\chi_{\{|f_{i1}| > M_i\}}||_{L^1} = 0$. For then, if we define $M_{i1} = \max\{M_i, 1\}$, and $M_{ij} = 1$ for $j > 1$, it is easy to check that $TE \subseteq \overline{QF_M}$, where $M = (M_{ij}).$

Let $K_i = ||h_i||_{L^{\infty}}$ for all *i*. First note that for $f \in E$, $||f|| \ge \int_0^1 f^*(t) dt$; hence $c\lambda\{|f| > c\} \leq ||f||$ if $c > ||f||$. Therefore, if $c > a_iK_i||f||$,

(5)

$$
\lambda\{|f_{i1}| > c\} \leq \lambda\left\{t : |f(a_i t)| > \frac{c}{a_i K_i}\right\}
$$

$$
= \frac{1}{a_i} \lambda\left\{|f| > \frac{c}{a_i K_i}\right\}
$$

$$
\leq \frac{K_i}{c} \|f\|.
$$

CASE 1: $\sup_i K_i = K < \infty$

Let (M_i) be any sequence such that $M_i/a_i \uparrow \infty$. Let $f \in E$. For all i such that $M_i > a_i K||f||, \lambda \{|f_{i1}| > M_i\} \leq K||f||/M_i$ by (5). Hence

$$
||f_{i1}\chi_{\{|f_{i1}|>M_i\}}||_{L^1} \leq \int_0^{K||f||/M_i} f_{i1}^*(t) dt
$$

\n
$$
\leq \int_0^{K a_i ||f||/M_i} f^*(t) h_i^*(t) dt
$$

\n
$$
\leq K \int_0^{K a_i ||f||/M_i} f^*(t) dt.
$$

Since $\int_0^1 f^*(t) dt \le ||f|| < \infty$, we obtain that $\lim_i ||f_{i1} \chi_{\{|f_{i1}| > M_i\}}||_{L^1} = 0$. CASE 2: $\sup_i K_i = \infty$ For each *i*, choose $b_i > 0$ such that $h_i^*(b_i) \geq K_i/2$. Then, for all $f \in E$,

(6)
$$
\frac{K_i}{2} \int_0^{b_i} f^*(t) dt \leq \int_0^{b_i} f^*(t) h_i^*(t) dt \leq ||f||
$$

since $||x'_{h_i}|| = ||x'_{h_i}|| \leq 1$. Let (n_i) be chosen so that $\lim_i K_i/K_{h_i} = 0$. Now let (M_i) be a sequence such that $(a_i K_i)^{-1} M_i > \max\{i, i/b_{n_i}\}\)$ for all i. If $f \in E$, and $i > ||f||$, then $\lambda\{|f_{i1}| > M_i\} \leq K_i||f||/M_i$ by (5). Therefore,

$$
||f_{i1}\chi_{\{|f_{i1}|>M_i\}}||_{L^1} \leq \int_0^{K_i||f||/M_i} f_{i1}^*(t) dt
$$

\n
$$
\leq K_i \int_0^{a_i K_i||f||/M_i} f^*(t) dt
$$

\n
$$
\leq K_i \int_0^{b_{n_i}} f^*(t) dt
$$

\n
$$
\leq \frac{2K_i||f||}{K_{n_i}} \quad \text{by (6)}.
$$

It follows that $\lim_{i} ||f_{i1} \chi_{\{|f_{i1}| > M_i\}}||_{L^1} = 0.$

Theorem 7 can be extended to certain rearrangement invariant spaces defined on non-separable measure spaces. Endow the two-point set $\{-1, 1\}$ with the measure which assigns a mass of 1/2 to each singleton set. For any index set *I*, denote by μ the product measure on $\{-1, 1\}^I$. If *I* is countable, $\{-1, 1\}^I$ is measure isomorphic to $[0, 1]$. For the remainder of this section, fix an index set I which has the cardinality of the continuum. For each $i \in I$, let $\varepsilon_i : \{-1, 1\}^I \to$ $\{-1,1\}$ be the projection onto the *i*-th coordinate. If J is a finite subset of I, and $\delta = (\delta_i)_{i \in J} \in \{-1, 1\}^J$, define $\phi_{J, \delta}$ to be the function $\prod_{i \in J} \chi_{\{\varepsilon_i = \delta_i\}}$ on $\{-1, 1\}^I$. Let Φ_J be the span of the functions $\{\phi_{J,\delta} : \delta \in \{-1,1\}^J\}$. It is not hard to see that the set $\Phi = \bigcup{\{\Phi_J : J \subseteq I, |J| < \infty\}}$ is a vector lattice (with the usual pointwise operations and order). Define E by

 $E=\{f=(f_i)_{i\in I}:f_i\in\Phi\text{ for all }i,\quad f_i\neq 0\text{ for at most finitely many }i\}.$

Similarly, let E_j consist of all $f = (f_i)_{i \in I} \in E$ such that $f_i \in \Phi_j$ for all i. Then E is a vector lattice with the coordinatewise operations and order, and $E = \bigcup \{E_J : J \subseteq I, |J| < \infty\}$. A norm $\|\cdot\|$ on E is called a lattice norm if $|f| \leq |g|$ implies $||f|| \leq ||g||$. For $f = (f_i) \in E$, let the distribution function d_f of **f** be defined by $d_{\mathbf{f}}(t) = \sum_{i \in I} \mu\{|f_i| > t\}, t \geq 0.$

THEOREM 8: Let $\|\cdot\|$ be a lattice norm on E which is rearrangement invariant in *the sense that* $f, g \in E, d_f = d_g$ *implies* $||f|| = ||g||$ *. Then* $(E, ||\cdot||)$ *is isometrically lattice isomorphic to a sublattice of W.*

Of course, it follows that the completion of E, \overline{E} , is isometrically isomorphic to a sublattice of \overline{W} . Since \overline{W} is isometrically lattice isomorphic to a sublattice of W by Theorem 5, the same is true for E . This leads immediately to the following corollary.

COROLLARY 9: If $1 \leq p \leq \infty$, then $\ell^p(I, L^p([-1,1]^I))$ is isometrically *isomorphic to a sublattice of W.*

As indicated above, L^1 may be identified (as a Banach lattice) with $L^1([-1, 1]^{\mathbb{Z}})$. This identification will be in force for the rest of the section. For each $k \in \mathbb{Z}$, let $r_k: \{-1, 1\}^{\mathbb{Z}} \to \{-1, 1\}$ be the projection onto the k-th coordinate. Select a bijection $\gamma: I \to \{-1,1\}^{\mathbb{N}}$. Thus, for every $i \in I$, $\gamma(i) = (\gamma(i,k))_{k=1}^{\infty}$, where $\gamma(i, k) = \pm 1$ for all $i \in I$, $k \in \mathbb{N}$. Finally, for every i, pick a strictly decreasing sequence of negative integers $k_i = (k_i(m))_{m=1}^{\infty}$ such that

- for each $m, \{k_i(m) : i \in I\}$ has only finitely many distinct values;
- if $i \neq i'$, then $\{m : k_i(m) = k_{i'}(m)\}\$ is finite.

Given a finite subset J of I, $\delta \in \{-1,1\}^J$, $i \in I$, and $m \in \mathbb{N}$, define, on $\{-1,1\}^{\mathbb{Z}}$,

$$
\psi_{J,\delta,i,m}=2^m\prod_{k=1}^m \chi_{\{r_k=\gamma(i,k)\}}\cdot \prod_{j\in J}\chi_{\{r_{k_j(m)}=\delta_j\}}.
$$

The mapping $T_{J,m}: E_J \to L^1$ is defined by

$$
T_{J,m}\mathbf{f}=\sum_{i\in I}\sum_{\delta\in\{-1,1\}^J}a(i,\delta)\psi_{J,\delta,i,m}
$$

for all $f = (f_i)_{i \in I} \in E_J$, where $f_i = \sum_{\delta \in \{-1,1\}^J} a(i, \delta) \phi_{J, \delta}$. Let us remark that the sum over i is in fact a finite sum, since $f_i = 0$ for all but finitely many i. It is clear that $T_{J,m}$ is linear. If I_0 and J are finite subsets of I, there exists $m_0 = m_0(I_0, J) \in \mathbb{N}$ such that

- \bullet $(\gamma(i, 1), \ldots, \gamma(i, m_0)) \neq (\gamma(i', 1), \ldots, \gamma(i', m_0))$ if $i, i' \in I_0, i \neq i'$,
- $k_i(m) \neq k_{i'}(m)$ whenever $j, j' \in J, j \neq j'$, and $m \geq m_0$.

The following lemma is easily verified by direct computation.

LEMMA 10: Let I_0, J_1 , and J_2 be finite subsets of I such that $J_1 \subseteq J_2$, and let $m \geq m_0(I_0, J_2)$. If

$$
\sum_{\delta \in \{-1,1\}^{J_1}} a(i,\delta) \phi_{J_1,\delta} = \sum_{\eta \in \{-1,1\}^{J_2}} b(i,\eta) \phi_{J_2,\eta}, \quad \text{for all } i \in I_0,
$$

or

$$
\sum_{i\in I_0}\sum_{\delta\in\{-1,1\}^{J_1}}a(i,\delta)\psi_{J_1,\delta,i,m}=\sum_{i\in I_0}\sum_{\eta\in\{-1,1\}^{J_2}}b(i,\eta)\psi_{J_2,\eta,i,m},
$$

then for all $\eta \in \{-1, 1\}^{J_2}$, and all $i \in I_0$, $b(i, \eta) = a(i, \delta)$, where $\delta = \eta_{|J_1}$.

An obvious consequence of the lemma is the following proposition.

PROPOSITION 11: Let I_0, J_1 , and J_2 be finite subsets of I such that $J_1 \subseteq J_2$, and let $m \geq m_0(I_0, J_2)$. If $\mathbf{f} = (f_i)_{i \in I} \in E_{J_1}$, and $f_i = 0$ for all $i \notin I_0$, then $T_{J_1,m}f = T_{J_2,m}f$.

For each $f \in E$, choose a finite subset $J(f)$ of I such that $f \in E_{J(f)}$. Given a double sequence (h_{mn}) of non-negative measurable functions on $\{-1,1\}^{\mathbb{Z}}$ such that $\sup_{m,n} ||T_{J(\mathbf{f}),m}\mathbf{f} \cdot h_{mn}||_{L^1} < \infty$ for all $\mathbf{f} \in E$, consider the (non-linear) mapping $T : E \to \ell^{\infty}(\ell^{\infty}(L^1))$ defined by $Tf = (T_{J(f),m}f \cdot h_{mn})_{mn}$.

PROPOSITION 12: Let $Q: \ell^{\infty}(\ell^{\infty}(L^1)) \rightarrow \ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1))$ be the quotient map. Then *QT* is a linear *lattice homomorphism.*

Proof: Let $f = (f_i)_{i \in I}$, $g = (g_i)_{i \in I} \in E$, and let $\alpha \in \mathbb{R}$. Choose a finite subset I_0 of I such that $f_i = 0 = g_i$ if $i \notin I_0$. Define $J = J(f) \cup J(g) \cup J(\alpha f + g)$. If $m \geq m_0(I_0, J)$, then, for all $n \in \mathbb{N}$,

$$
T_{J(\alpha f+g),m}(\alpha f+g) \cdot h_{mn} = T_{J,m}(\alpha f+g) \cdot h_{mn}
$$
 by Proposition 11
= $\alpha T_{J,m}f \cdot h_{mn} + T_{J,m}g \cdot h_{mn}$ by linearity of $T_{J,m}$
= $\alpha T_{J(f),m}f \cdot h_{mn} + T_{J(g),m}g \cdot h_{mn}$ by Proposition 11.

Hence *QT* is linear. Now let $J' = J(f) \cup J(|f|)$. Note that the functions $\{\psi_{J',n,i,m} : i \in I_0, \eta \in \{-1,1\}^{J'}\}$ are pairwise disjoint if $m \geq m_0(I_0, J')$. Thus $T_{J',m}[\mathbf{f}] = |T_{J',m}\mathbf{f}|$ for all $m \geq m_0(I_0, J')$. For all such m, and all $n \in \mathbb{N}$, it follows from Proposition 11 that

$$
|T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_{mn}|=|T_{J(\mathbf{f}),m}\mathbf{f}|\cdot h_{mn}=|T_{J',m}\mathbf{f}|\cdot h_{mn}=T_{J',m}|\mathbf{f}|\cdot h_{mn}=T_{J(|\mathbf{f}|),m}|\mathbf{f}|\cdot h_{mn}.
$$

Therefore, $|QTf| = QT|f|$, as required.

Given $m \in \mathbb{N}$, the set $K_m = \{k_i(m) : i \in I\}$ is a finite subset of negative integers. Let $K'_m = \{1, 2, ..., m\} \cup K_m$. If $\eta = (\eta_k) \in \{-1, 1\}^{K'_m}$, let $\zeta_{\eta, m}$ be the function $\prod_{k\in K'_m} \chi_{\{r_k=\eta_k\}}$ defined on $\{-1,1\}^{\mathbb{Z}}$. Associate with each real sequence $c = (c_{\eta})_{\eta \in \{-1,1\}^{K'} m}$ a function $h_c = \sum_{\eta \in \{-1,1\}^{K'} m} c_{\eta} \zeta_{\eta,m}$. Also, for each m, choose subsets I_m and J_m of I such that $|I_m| = 2^m$, and $|J_m| = |K_m|$. There exists a bijection $\pi_m: I_m \times \{-1,1\}^{J_m} \to \{-1,1\}^{K'_m}$. Given $c = (c_\eta)_{\eta \in \{-1,1\}^{K'_m}}$, define $\mathbf{h}_c = (h_{i,c})_{i \in I}$ by $h_{i,c} = \sum_{\tau \in \{-1,1\}^{J_m}} c_{\pi_m(i,\tau)} \phi_{J_m,\tau}$ for $i \in I_m$, and $h_{i,c} = 0$ otherwise.

LEMMA 13: Let $f = (f_i)_{i \in I} \in E$, and let I_0 be a finite subset of I such that $f_i = 0$ if $i \notin I_0$. If $m \geq m_0(I_0, J(f))$, and $c = (c_{\eta})_{\eta \in \{-1,1\}^{K'}m}$, then there exists $\tilde{\mathbf{h}} = (\tilde{h}_{i})_{i \in I}$, such that $d_{\tilde{\mathbf{h}}} = d_{\mathbf{h}_c}$, and $||T_{J(\mathbf{f}),m} \mathbf{f} \cdot h_c||_{L^1} = \sum_{i \in I} \int |f_i \tilde{h}_i|$.

Proof: Write $f_i = \sum_{\delta \in \{-1,1\}^{J(f)}} a(i, \delta) \phi_{J(f), \delta}$ for all $i \in I_0$. There exist pairwise disjoint subsets $\{C_{i,\delta} : i \in I_0, \delta \in \{-1,1\}^{J(f)}\}$ of $\{-1,1\}^{K'_m}$, each of cardinality $2^{|K_m|-|J(f)|}$, such that $\psi_{J(f),\delta,i,m} = 2^m \sum_{n \in C_i} \zeta_{\eta,m}$. Then

$$
||T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_c||_{L^1}=\sum_{i\in I_0}\sum_{\delta\in\{-1,1\}^{J(\mathbf{f})}}\sum_{\eta\in C_{i,\delta}}\frac{|a(i,\delta)c_{\eta}|}{2^{|K_m|}}.
$$

Since $m \geq m_0(I_0, J(f)), |I_0| \leq 2^m$, and $|J(f)| \leq |K_m|$. Choose subsets I_1 and J'_m of I such that $I_0 \cap I_1 = \emptyset$, $|I_0 \cup I_1| = 2^m$, $J(f) \subseteq J'_m$, and $|J'_m| = |K_m| = |J_m|$. For $i \in I_0, \delta \in \{-1,1\}^{J(f)}$, there exists a bijection $\nu_{i,\delta}: C_{i,\delta} \to \{\tau \in \{-1,1\}^{J'_m}$:

 $\tau_{|J(f)} = \delta$. Define $\tilde{h}_i = \sum_{\delta \in \{-1,1\}^{J(f)}} \sum_{\eta \in C_{i,\delta}} c_{\eta} \phi_{J'_{m},\nu_{i,\delta}(\eta)}$ for $i \in I_0$. Finally, there is a bijection

$$
\beta\colon I_1\times\{-1,1\}^{J'_m}\to\{-1,1\}^{K'_m}\setminus\cup\{C_{i,\delta}:i\in I_0,\delta\in\{-1,1\}^{J(\mathbf{f})}\}.
$$

Define $\tilde{h}_i = \sum_{\tau \in \{-1,1\}^{J'_m}} c_{\beta(i,\tau)} \phi_{J'_m,\tau}$ for $i \in I_1$. Then let $\tilde{h}_i = 0$ if $i \notin I_0 \cup I_1$. It is straightforward to check that $\tilde{\mathbf{h}} = (\tilde{h}_{i})_{i \in I}$ fulfills the requirements of the $lemma.$

For all $m \in \mathbb{N}$, let B_m be the collection of all non-negative rational sequences $c = (c_n)_{n \in \{-1,1\}^{K'} n}$ such that $\sum_{i \in I} \int |f_i h_{i,c}| \le ||\mathbf{f}||$ for all $\mathbf{f} = (f_i)_{i \in I} \in E$. Let us note that if $c \in B_m$, and $\tilde{\mathbf{h}} = (\tilde{h}_i)_{i \in I}$, $d_{\tilde{\mathbf{h}}} = d_{\mathbf{h}_c}$, then, due to the rearrangement invariance of the norm on E, $\sum_{i\in I} \int |f_i\tilde{h}_i| \leq ||\mathbf{f}||$ for all $\mathbf{f} \in E$.

PROPOSITION 14: Let $f = (f_i)_{i \in I} \in E$, and let I_0 be a finite subset of I such *that* $f_i = 0$ for all $i \notin I_0$. For all $m \geq m_0(I_0, J(f))$,

$$
\sup_{c\in B_m}||T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_c||_{L^1}=||\mathbf{f}||.
$$

Proof: By Lemma 13, for any $c \in B_m$, there exists $\tilde{\mathbf{h}} = (\tilde{h}_i)_{i \in I}$ such that $d_{\tilde{\mathbf{h}}} = d_{\mathbf{h}_c}$, and $||T_{J(\mathbf{f}),m}\mathbf{f} \cdot h_c||_{L^1} = \sum_{i \in I} \int |f_i \tilde{h}_i|$. The last sum is $\leq ||\mathbf{f}||$ by the remark preceding the proposition. Conversely, for any $\varepsilon > 0$, there exists $x' \in E'$, $||x'|| \leq 1$ such that $|x'(\mathbf{f})| > (1 - \varepsilon)||\mathbf{f}||$. For $i_0 \in I_0$, and $\delta \in \{-1, 1\}^{J(\mathbf{f})}$, let $\mathbf{x}_{i_0,\delta} = (x_i) \in E$, where $x_i = \phi_{J(\mathbf{f}),\delta}$ if $i = i_0$, and $x_i = 0$ otherwise. Set $b(i,\delta) =$ $2^{|J(f)|}x'(\mathbf{x}_{i,\delta})$ for $i \in I_0, \delta \in \{-1,1\}^{J(f)}$. Write $f_i = \sum_{\delta \in \{-1,1\}^{J(f)}} a(i,\delta) \phi_{J(f),\delta}$ for $i \in I_0$. Then

$$
(1-\varepsilon)||\mathbf{f}|| < |x'(\mathbf{f})| \leq \sum_{i\in I_0}\sum_{\delta\in\{-1,1\}^{J(\mathbf{f})}}\frac{|a(i,\delta)b(i,\delta)|}{2^{|J(\mathbf{f})|}}.
$$

Hence, there exist non-negative rational numbers $c(i, \delta)$ such that $c(i, \delta) \leq |b(i, \delta)|$, and

$$
(1-\varepsilon)\|\mathbf{f}\|<\sum_{i\in I_0}\sum_{\delta\in\{-1,1\}^{J(\mathbf{f})}}\frac{|a(i,\delta)|c(i,\delta)}{2^{|J(\mathbf{f})|}}.
$$

Define $\mathbf{g} = (g_i)_{i \in I}$ by $g_i = \sum_{\delta \in \{-1,1\}^{J(f)}} c(i, \delta) \phi_{J(f), \delta}$ for $i \in I_0, g_i = 0$ otherwise. If $\mathbf{p} = (p_i)_{i \in I} \in E$, define $P_{J(\mathbf{f})}\mathbf{p} = (q_i)_{i \in I}$,

$$
q_i = \sum_{\delta \in \{-1,1\}^{J(f)}} 2^{|J(f)|} \int p_i \phi_{J(f),\delta} \cdot \phi_{J(f),\delta}.
$$

By a standard argument, using the rearrangement invariance of the norm on E , we see that $||P_{J(f)}\mathbf{p}|| \leq ||\mathbf{p}||$. Hence

(7)
$$
\sum_{\mathbf{i}\in I_0}\int |p_{\mathbf{i}}g_{\mathbf{i}}| \leq |x'|(P_{J(\mathbf{f})}|\mathbf{p}|) \leq ||\mathbf{p}||.
$$

From the proof of Lemma 13, there are pairwise disjoint subsets $\{C_{i,\delta} : i \in I_0, \delta \in \{-1,1\}^{J(f)}\}$ of $\{-1,1\}^{K'_m}$, each of cardinality $2^{|K_m|-|J(f)|}$, such that if we let $c_{\eta} = c(i, \delta)$ for all $\eta \in C_{i, \delta}, i \in I_0, \delta \in \{-1, 1\}^{J(\mathbf{f})}$, and $c_{\eta} = 0$ otherwise, then for $c = (c_{\eta})_{\eta \in \{-1,1\}^{K'}_{m}}$,

$$
||T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_c||_{L^1}=\sum_{i\in I_0}\sum_{\delta\in\{-1,1\}^{J(\mathbf{f})}}\frac{|a(i,\delta)|c(i,\delta)}{2^{|J(\mathbf{f})|}}> (1-\varepsilon)||\mathbf{f}||.
$$

Note that $d_{\mathbf{h}_c} = d_{\mathbf{g}}$. It follows from (7) that $\sum_{i \in I_0} \int |p_i h_{i,c}| \leq ||\mathbf{p}||$ for all $\mathbf{p} = (p_i)_{i \in I} \in E$. Thus $c \in B_m$. Since $\varepsilon > 0$ is arbitrary, we obtain the reverse inequality

$$
\sup_{c\in B_m}||T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_c||_{L^1}\geq||\mathbf{f}||.
$$

This completes the proof the proposition.

We are now ready to prove Theorem 8. For each $m \in \mathbb{N}$, B_m is countable. Hence we can list the functions ${h_c : c \in B_m}$ as a sequence $(h_{mn})_{n=1}^{\infty}$. Define the map $T: E \to \ell^{\infty}(\ell^{\infty}(L^1))$ by $Tf = (T_{J(f),m}f\cdot h_{mn})_{mn}$. By Proposition 12, QT is a lattice homomorphism, where $Q: \ell^{\infty}(\ell^{\infty}(L^1)) \to \ell^{\infty}(\ell^{\infty}(L^1))/c_0(\ell^{\infty}(L^1))$ is the quotient map. It follows from Proposition 14 that *QT* is an (into) isometry. Finally, note that in the notation of Lemma 13 and Proposition 14,

$$
T_{J(\mathbf{f}),m}\mathbf{f} \cdot h_c \in \text{span}\{\zeta_{\eta,m} : \eta \in \{-1,1\}^{K'_m}\}
$$

for all $c \in B_m$, $m \geq m_0(I_0, J(f))$. Hence

$$
||T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_c||_{L^{\infty}} \leq 2^{|K_m'|}||T_{J(\mathbf{f}),m}\mathbf{f}\cdot h_c||_{L^1}.
$$

Thus $QTf \in QF_M$, where $M = (M_{mn})$, $M_{mn} = 2^{|K'_m|}$ for all m and n. An appeal to Theorem 3 yields the desired result.

3. Order isometry

Following [5], we say that a linear operator T from a Banach lattice E into a Banach lattice F is an order isometry if $Tx \geq 0$ if and only if $x \geq 0$, and $||Tx|| = ||x||$ for all $x \in E$. In [5], it is shown that if E is a separable Banach lattice, and E' has a weak order unit, then E' is order isometric to a closed subspace of \overline{W} . Here, we show that the assumption that E' has a weak order unit can be removed.

Let $\Gamma = \{-1,1\}^{\mathbb{N}}$. If $m \in \mathbb{N}$, and $\phi \in \Phi_m = \{-1,1\}^m$, let

$$
\Gamma_{\phi} = \{ \gamma \in \Gamma : \gamma_{|\{1,\ldots,m\}} = \phi \}.
$$

PROPOSITION 15: There is an order isometry from $\ell^{\infty}(\ell^{1}(\Gamma))$ onto a closed *subspace of* $(\bigoplus \ell^1(\Phi_m))_{\ell^{\infty}}/(\bigoplus \ell^1(\Phi_m))_{c_0}$.

Proof: Partition N into a sequence of infinite subsets $(L_n)_{n=1}^{\infty}$. If $a \in \ell^{\infty}(\ell^1(\Gamma)),$ write $a = (a_{\gamma}^{n})$, so that $||a|| = \sup_{n} \sum_{\gamma \in \Gamma} |a_{\gamma}^{n}| < \infty$. Given $m \in \mathbb{N}$, and $\phi \in \Phi_m$, define $b_{\phi} = \sum_{\gamma \in \Gamma_{\phi}} a_{\gamma}^n$, where n is the unique integer such that $m \in$ L_n . Define the map $U: \ell^{\infty}(\ell^1(\Gamma)) \to (\bigoplus \ell^1(\Phi_m))_{\ell^{\infty}}$ by $Ta = b$, where $b =$ $((b_{\phi})_{\phi \in \Phi_1}, (b_{\phi})_{\phi \in \Phi_2}, \ldots)$. Clearly T is a positive linear operator. Note that if $m \in L_n$, then

$$
\sum_{\phi \in \Phi_m} |b_{\phi}| \leq \sum_{\phi \in \Phi_m} \sum_{\gamma \in \Gamma_{\phi}} |a_{\gamma}^n| = \sum_{\gamma \in \Gamma} |a_{\gamma}^n| \leq ||a||.
$$

Hence $||T|| \leq 1$. Let $\mathcal{Q}: (\bigoplus \ell^1(\Phi_m))_{\ell^{\infty}} \to (\bigoplus \ell^1(\Phi_m))_{\ell^{\infty}}/(\bigoplus \ell^1(\Phi_m))_{c_0}$ be the quotient map. Then QT is positive, and $||QT|| \leq 1$. We claim that QT is an order isometry.

If $QTa = Qb \geq 0$, then $\lim_{m\to\infty} \sum \{b_{\phi} : \phi \in \Phi_m, b_{\phi} \leq 0\} = 0$. If $a \not\geq 0$, then there exist n_0 and γ_0 such that $a_{\gamma_0}^{n_0} < 0$. List the elements of L_{n_0} in ascending order: $L_{n_0} = \{m_1 < m_2 < \cdots \}$. For all $r \in \mathbb{N}$, let $\phi_r = \gamma_{0}(\{1, \ldots, m_r\})$. Then

$$
\lim_{r \to \infty} b_{\phi_r} = \lim_{r \to \infty} \sum_{\gamma \in \Gamma_{\phi_r}} a_{\gamma}^{n_0} = a_{\gamma_0}^{n_0} < 0.
$$

Thus

$$
\lim_{r \to \infty} \sum_{\phi \in \Phi_{m_r} \atop b_{\phi} \le 0} b_{\phi} \le a_{\gamma_0}^{n_0} < 0,
$$

a contradiction. Therefore, $a \geq 0$.

Now, assume $||a|| > 1$. Then there exists n such that $\sum_{\gamma \in \Gamma} |a^n_{\gamma}| > 1$. Given $\epsilon > 0$, choose a finite subset Γ_1 of Γ such that

$$
\sum_{\gamma \in \Gamma_1} |a^n_{\gamma}| > 1 \quad \text{and} \quad \sum_{\gamma \notin \Gamma_1} |a^n_{\gamma}| < \varepsilon.
$$

Choose $m \in L_n$ so that if we define $\phi_{\gamma} = \gamma_{\{1,\dots,m\}}$ for all $\gamma \in \Gamma$, then $\phi_{\gamma} \neq \phi_{\gamma'}$ for all $\gamma, \gamma' \in \Gamma_1, \gamma \neq \gamma'$. For $\tilde{\gamma} \in \Gamma_1$,

$$
|b_{\phi_{\tilde{\gamma}}}|=|\sum_{\gamma\in\Gamma_{\phi_{\tilde{\gamma}}}}a_{\gamma}^n|\geq |a_{\tilde{\gamma}}^n|-\sum_{\gamma\notin\Gamma_{\phi_{\tilde{\gamma}}}}|a_{\gamma}^n|.
$$

Therefore,

$$
\sum_{\gamma \in \Gamma_1} |b_{\phi_\gamma}| \ge \sum_{\gamma \in \Gamma_1} |a^n_\gamma| - \sum_{\gamma \notin \Gamma_1} |a^n_\gamma| > 1 - \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, $||\mathcal{Q}Ta|| \ge ||a||$. Since $||\mathcal{Q}T|| \le 1$ as well, we conclude that QT is an isometry. \blacksquare

LEMMA 16: Let E be a *separable* Banach *lattice. Then E' is isometrically lattice isomorphic to a sublattice of* $\ell^{\infty}(\ell^1(\Gamma, L^1))$.

Proof: By the proof of Lemma 3 in [5], for any $x \in E$, $x > 0$, there exist a compact Hausdorff space K, and a lattice homomorphism $S: C(K) \to E$ such that *S'* is a lattice homomorphism, [0, *S'x']* is weakly (and hence norm) separable, and $||S'x'|| = |x'|(x)$ for all $x' \in E'$. Note that E', and hence $S'E'$, has a dense subset of cardinality $\leq |\Gamma|$. Since $S'E'$ is a sublattice of the AL-space $M(K)$, has separable order intervals, and has density $\leq |\Gamma|$, it follows that $S'E'$ is isometrically lattice isomorphic to a sublattice of $\ell^1(\Gamma, L^1)$. Now let (x_n) be a positive sequence in the unit ball of E such that $||x'|| = \sup_n |x'| (x_n)$ for all $x' \in E'$. For each n, there exists a lattice homomorphism $R_n: E' \to \ell^1(\Gamma, L^1)$ such that $||R_nx'|| = |x'|(x_n)$ for all $x' \in E'$. Clearly, the map $R: E' \to \ell^{\infty}(\ell^1(\Gamma; L^1))$ defined by $Rx' = (R_n x')_{n=1}^{\infty}$ is an isometric lattice isomorphism.

THEOREM 17: Let E be a *separable* Banaeh lattice. Then *E' is* order *isometric to a closed* subspace of W.

Proof: For any $n \in \mathbb{N}$, let E_n be the conditional expectation operator on L^1 with respect to the σ -algebra generated by the sets $\{[(k-1)/2^n, k/2^n) : 1 \leq k \leq 2^n\}.$ Then the map $V: \ell^1(\Gamma, L^1) \to (\bigoplus_{n=1}^{\infty} \ell^1(\Gamma, E_n L^1))_{\ell_\infty}$ defined by $V((f_\gamma)_{\gamma \in \Gamma}) =$ $((E_n f_\gamma)_{\gamma \in \Gamma})_{n=1}^{\infty}$ is an order isometry. Since $\ell^1(\Gamma, E_n L^1)$ is clearly isometrically lattice isomorphic to $\ell^1(\Gamma)$, it follows that $\ell^{\infty}(\ell^1(\Gamma, L^1))$, and hence E', is order isometric to a closed subspace of $\ell^{\infty}(\ell^{1}(\Gamma))$, which in turn is order isometric to a closed subspace of $(\bigoplus \ell^1(\Phi_m))_{\ell^{\infty}}/(\bigoplus \ell^1(\Phi_m))_{c_0}$ by Proposition 15. It is a simple exercise to check that the latter space is isometrically lattice isomorphic

to a sublattice of QF_M for a suitably chosen $M = (M_{ij})$. Finally, QF_M is isometrically lattice isomorphic to a sublattice of W by Theorem 3. \blacksquare

References

- [1] M. Cwikel and C. Fefferman, *Maximal seminorms on WeakL 1,* Studia Mathematica 69 (1980), 149-154.
- [2] M. Cwikel and C. Fefferman, The *canonical seminorm on WeakL 1,* Studia Mathematica 78 (1984), 275-278.
- [3] J. Kupka and N. T. Peck, The *Ll structure of weak L1,* Mathematische Annalen 269 (1984), 235-262.
- [4] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II,* Springer-Verlag, Berlin, 1979.
- [5] H. P. Lotz and N. T. Peck, *Sublattices of* the *Banach envelope of WeakL 1,* Proceedings of the American Mathematical Society 126 (1998), 75-84.
- [6] N. T. Peck and M. Talagrand, *Banach sublattices of weak L1,* Israel Journal of Mathematics 59 (1987), 257-271.
- [7] H. H. Schaefer, *Banach Lattices and Positive Operators,* Springer-Verlag, Berlin, 1974.